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Data Overview

(A. Meyerhans)
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CFSE Labeling (Lyons and Parish, 1994)

Cells cultured with CFDA-SE then washed

CFDA-SE becomes protein-bound and fluorescent CFSE

Dye split between daughter cells at division

Dye naturally turns over/degrades (very slowly)

Fluorescence Intensity (FI) of CFSE measured via flow
cytometry

FI linear with dye concentration ⇒ FI ∝ mass

Several advantages over other dyes/techniques
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CFSE Data Set
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Goals of Modeling

Cellular ‘Dynamic Responsiveness’
Link cell counts with proliferation/death rates

Population doubling time
Cell viability
Biological descriptors (cell cycle time, etc.)

Uncertainty Identification, Variability Quantification...
... in the experimental procedure
... for estimated rates/etc

Analyze cell differentiation and division-linked changes

Investigate immunospecific extracellular signaling
pathways

Comparison among donors/cell types/disease progression

Clay Thompson CFSE Modeling



Data Math. Model Stat. Model Next Steps

Traditional Approach (curve fitting)

Fit data with gaussian curves to determine approximate
cells per generation
Traditional ‘semi-quantitative analysis’ pioneered by Gett
and Hodgkin et al. (2000)

(A.V. Gett and P.D. Hodgkin, A cellular calculus for signal integration by T cells, Nature Immunology 1 (2000),

239–244.)
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Traditional Approach (cont’d)

Gett-Hodgkin method quick, easy to implement, useful
comparisons between data sets (e.g. stimulation
conditions)

Compatible with ODE, DDE models; ‘indirect fitting’ for
parameter estimation
Generalizations, extensions, and various other modeling
efforts

Smith-Martin model (with generalizations)
Cyton model
Branching process models
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Label-Structured Model

All previous work with cell numbers determined by
deconvolution
Alternatively, we propose to fit the CFSE histogram data
directly

Capture full behavior of the population density
No assumption on the shape of CFSE uptake/distribution

Histogram presentation of cytometry data makes
structured population models a natural choice

Key ideas first formulated by Luzyanina et al., 2007
FI (or log FI) ⇔ Division Number
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Label-Structured Model (cont’d)

This model must account for (Luzyanina et al., 2007):

Dilution of CFSE as cells divide (AutoFI)

Slow decay of FI over time (CFSE turnover)

Asynchronous division times
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Cellular Autofluorescence
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CFSE Turnover

(C. Parish, Fluorescent dyes for lymphocyte migration and proliferation studies, Immunology and Cell Biol. 77

(1999), 499–508.)
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‘Biphasic Decay’
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Fragmentation Mathematical Model

Structured density n(t , x) (cells/UI)

(Exponential) Proliferation rate α(t , x)

(Exponential) Death rate β(x)

Gompertz decay rate, v(t , x) = c(x − xa)e−kt

∂n(t , x)
∂t

+
∂[v(t , x)n(t , x)]

∂x
= −(α(t , x) + β(x))n(t , x)

+ χ[xa,x∗]4α(t , 2x − xa)n(t , 2x − xa)
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Inverse Problem

Parameters xa, c, k , α(t , y), β(y) to be determined by
fitting to data.
Need (finite-dimensional) parameterization of α and β.

Piecewise linear functions

Statistical properties of error currently unknown

Use OLS (independent, identically distributed, constant
variance error) for proof of concept

θ̂OLS = arg min
θ∈Θ

I
∑

i=1

J(i)
∑

j=1

(I[n̂](ti , zj ; θ)− N j
i )

2 = arg min J(θ),

Forward solve with hpde by L.Shampine (Lax-Wendroff)

Use fmincon (BGFS + active set) for optimization
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Time-Independent Proliferation is Insufficient
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Time-Dependent Proliferation is Sufficient
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Fragmentation Model Summary

Model is capable of precisely fitting the observed data

c, k , xa estimated consistently (as α and β nodes change),
though subject to high experimental variability

Time-dependence of the proliferation rate is an essential
feature of the model

Biologically relevant average values of proliferation and
death (in terms of number of divisions undergone) are
easily computable.
But...

Still cannot compute cell numbers
Data overlap affecting estimated rates (?)
Large number of parameters necessary
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Fragmentation Model Summary (cont’d)

∂n(t , x)
∂t

+
∂[v(t , x)n(t , x)]

∂x
= −(α(t , x) + β(x))n(t , x)

+ χ[xa,x∗]4α(t , 2x − xa)n(t , 2x − xa)

Applications to protein fragmentation and aggregation

Possible generalizations to size/volume structure
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Division Structure: The Compartmental Model

Use compartments (on division number) to eliminate
fragmentation terms

No need for structure dependence of estimated rates

∂n0

∂t
+

∂[v(t , x)n0(t , x)]
∂x

=− (α0(t) + β0(t))n0(t , x)

∂n1

∂t
+

∂[v(t , x)n1(t , x)]
∂x

=− (α1(t) + β1(t))n1(t , x) + R1(t , x)

...

∂nimax

∂t
+

∂[v(t , x)nimax
(t , x)]

∂x
=− βimax

(t)nimax
(t , x) + Rimax

(t , x)

where Ri(t , x) = 4αi−1(t)ni−1(t , 2x − xa) for 1 ≤ i ≤ imax
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Method of Characteristics Solution

n0(t , x(t ; s)) =Φ0(s)exp

(

−

∫ t

0
f0(τ)dτ

)

ni(t , x(t ; s)) =Φi(s)exp

(

−

∫ t

0
fi(τ)dτ

)

+

∫ t

0
Ri(τ, x(τ ; s))exp

(

−

∫ t

τ

fi(ξ)dξ
)

dτ

where fi(t) = αi(t) + βi(t)− ce−kt

The cell numbers can be easily computed Ni(t) =
∫

ni(t , x)dx
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Parameterizations

B1 βi(t) = 0 for all i and for all t

B2 βi(t) = β for all i and for all t

B3 β0(t) = β0, βi(t) = 0 for i ≥ 1

B4 β0(t) = β0, βi(t) = β for i ≥ 1

B5 βi(t) = βi for each i

A1 α0(t) = α0; αi(t) = α for all i

A2 αi(t) = αi for all t

A3 α0(t) = α0χ[t>t∗]; αi(t) = α for all i

A4 α0(t) = α0χ[t>t∗]; αi(t) = αi

A5 piecewise linear functions of time (see below)
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Distributed Autofluorescence
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AutoFI appears approximately lognormally distributed

Dynamic properties ignored (for now)

Can study effective design of intracellular dyes
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Distributed Autofluorescence (cont’d)

η(t , x) = E [n(t , x ; xa)|P] =
∫ xmax

a

xmin
a

n(t , x ; xa)dP(xa)

dP
dxa

= p(xa) =
1

xaσ
√

2π
exp

(

− (log x−µ)2

2σ2

)

where

µ = log(E [xa])−
1
2

log
(

1 +
Var(xa)

E [xa]2

)

σ2 = log
(

1 +
Var(xa)

E [xa]2

)

Clay Thompson CFSE Modeling



Data Math. Model Stat. Model Next Steps

Another Inverse Problem

Population density n(t , x) =
∑imax

i=0 ni(t , x)

Use OLS framework again–assume constant variance
error

θ̂OLS(n
j
k ) = arg min

θ∈Θ
J(θ|nj

k )

= arg min
θ∈Θ

∑

k ,j

(

I[ñ](tj , z
j
k ; θ)− nj

k

)2

Need to compare different parameterizations (model
comparison)–Akaike Information Criterion

AIC = m log
(

J(θ̂OLS)
m

)

+ 2p
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Best-fit, AIC-selected results
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Cell Numbers
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Pi(t) = Ni(t)/2i

Population doubling time and precursor viability easily
computable
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Model Results and Conclusions

Cell/precursor numbers (per generation) easy to compute
More complex models receive highest ranking

Highly time-dependent proliferation rates (A5)
Heterogeneous death rates (B5)
Distributed AutoFI is an important modeling feature

But...
AIC may be biased by statistical model
‘Time-dependence’ possibly a byproduct of Malthusian form
Cell counts between data points biased by model form
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The Statistical Model

Links the mathematical model to the data

Implications for estimation procedure

N j
k = I[ñ](tj , z

j
k ; θ0) + Ekj

Currently using constant variance (CV) model,
Var(Ekj) = σ2

0 (⇒ Absolute Error)

Could use constant coefficient of variance (CCV),
Var(Ekj) = σ2

0I[ñ](tj , z
j
k ; θ0)

2 (⇒ Relative Error)
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Residual Plots
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Residual Plots (cont’d)
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New Statistical Model

N j
k ∼ N

(

λj I[ñ](tj , zk ), λj
B
b̂j

I[ñ](tj , zk )

)

λj = bj/b̂j

bj is the ‘true’ number of beads counted at time tj

b̂j is the actual number of beads counted

B is the total number of beads original placed into each
well

‘Sampling without replacement’
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New Statistical Model (cont’d)

Can be derived from counting arguments (ignoring
interdependence)

Additional parameters bj to be estimated

Explains residual variance, ‘precursor cohort problem’

Implications for estimation procedure, model comparison
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Model Generalizations

Examination of AutoFI distribution
Cell division as a fission process
Activation and/or time-dependence (machine calibration
issues?)
Nonparametric estimation?
... or not even estimate it at all?

(Improved) biologically meaningful prolf/death rates
Smith-Martin, probabilistic mechanisms
Include stimulation/signaling mechanisms
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Allgöwer et al.

Dynamics for cell division, CFSE quantity, and measured
FI can be decoupled
Allows for fast computational solution

ni(t , x) = Ni(t , x)n̄i (t , x)

where

dNi

dt
= −(αi(t) + βi(t))Ni (t) + 2αi−1(t)Ni−1(t)

N0(0) = N0,Ni(0) = 0

and

∂n̄i

∂t
−

∂[v(t , x)n̄(t , x)]
∂x

= 0

n̄i (0, x) = 2iΦ(2i x)/N0

Convolution operator to link CFSE content with measured
FI (hence AutoFI)
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Experimental Extensions

Account for multiple cell cultures present in PBMC culture

Antigen-specific stimulation

Division-linked changes, differentiated subsets

Extracellular signaling, knockout experiments

In vitro vs in vivo differences

Linking to immune/pathogenesis models

Analyze Proliferation in Diseased vs Healthy cells
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