Numerical Simulations of Compact Binaries

Lawrence E. Kidder Cornell University

CSCAMM Workshop Matter and Electromagnetic Fields in Strong Gravity 26 August 2009, University of Maryland

- Cornell-Caltech Spectral Einstein Code (SpEC)
- Binary Black Hole Simulations
- Neutron Star Black Hole Simulations

Binary Black Holes

- Collaborators:
 - Cornell: Mike Boyle, Lawrence Kidder, Geoffrey Lovelace, Abdul Mroué, Rob Owen, Saul Teukolsky
 - Caltech: Luisa Buchman, Tony Chu, Mike Cohen, Lee Linblom, Keith Matthews, Mark Scheel, Bela Szilagyi, Kip Thorne
 - CITA: Harald Pfeiffer
- Motivation:
 - Gravitational waves
 - Properties of remnant BH
 - Study strong-field region
- Numerical approaches:
 - Generalized Harmonic with Excision

[Pretorius; PRL 95, 121101 (2005)]

Moving puncture

[Campanelli, Lousto, Marronetti, Zlochower; PRL 96, 111101 (2006)] [Baker, Centrella, Choi, Koppitz, van Meter; PRL 96, 111102 (2006)]

Spectral Einstein Code (SpEC)

[Kidder, Pfeiffer, Scheel]

• Generalized harmonic formulation of Einstein's equations [Friedrich; CMP 100, 525 (1985)]

• 10 coupled first-order wave equations (50 variables)

[Lindblom, Scheel, Kidder, Owen, Rinne; CQG 23, S447 (2006)]

Constraint damping

[Gundlach, Calabrese, Hinder, Martin-Garcia; CQG 22, 3767 (2005)]

Dual frame method with dynamic tracking of the black holes

[Scheel, Pfeiffer, Lindblom, Kidder, Rinne, Teukolsky; PRD 74, 104006 (2006)]

- Time-dependent rotation and scaling
- Use control theory to adjust mapping to track holes
- Boundary conditions
 - Excision boundary is pure outflow (no BC needed)
 - Constraint preserving [Lindblom et al (2006)]
 - No incoming physical radiation
 - Minimize reflections of gauge modes

[Rinne, Lindblom, Scheel; CQG 24, 4053 (2007)]

Multidomain pseudospectral method

- Exponential convergence for smooth solutions
- Highly efficient for high accuracy

BH-BH equal mass, non-spinning simulation

• 16.5 orbit inspiral-meger-ringdown

[Boyle, Brown, Kidder, Mroué, Pfeiffer, Scheel, Cook, Teukolsky; PRD 76, 124038 (2007)] [Scheel, Boyle, Chu, Kidder, Matthews, Pfeiffer; PRD 79, 024003 (2009)]

- Non-spinning $S_i/m_i^2 < 10^{-5}$
- Low eccentricity $e \approx 6 \times 10^{-5}$
- Numerical error: $\delta \phi \approx 0.02$ radians; $\delta A/A \approx 0.003$
- $M_f/M_i = 0.95162(2)$
- $S_f/M_f^2 = 0.68646(4)$

BH-BH Getting from inspiral to ringdown

- Accurate, efficient inspirals up to an orbit before merger
- Choosing gauge source functions key to get common horizon [Lindblom, Szilagyi; arXiv:0904.4873 (2009)]
- Change grid decomposition, follow ringdown

6/18

BH-BH Current status

M_{2}/M_{1}	$ec{S}_1/M_1^2$	$ec{S}_2/M_2^2$	N _{orbits}	Status	Reference
1	0	0	16	Ringdown	[Scheel et al (2009)]
2	0	0	15	Ringdown	[Buchman et al (in prep)]
3	0	0	15	Inspiral	[Buchman et al (in prep)]
4	0	0	15	Inspiral	[Buchman et al (in prep)]
6	0	0	8	Inspiral	[Buchman et al (in prep)]
1	0	0.5 <i>2</i>	4.5	Inspiral	[unpublished]
3	0	0.5 <i>2</i>	6	Inspiral	[unpublished]
1	-0.4 <i>2</i>	-0.4 <i>2</i>	11	Ringdown	[Chu et al (in prep)]
1	0.4 <i>2</i>	0.4 <i>2</i>	15	Merged	[Chu et al (in prep)]
1	$-0.5\hat{x}$	-0.5 <i>2</i>	6.5	Inspiral	[unpublished]
2	$\frac{0.2}{\sqrt{2}}(\hat{Z}-\hat{X})$	$\frac{-0.4}{\sqrt{2}}(\hat{z}+\hat{y})$	1.5	Ringdown	[unpublished]
2	$\frac{\check{0}.\check{z}}{\sqrt{2}}(\hat{z}-\hat{x})$	$\frac{-0.4}{\sqrt{2}}(\hat{z}+\hat{y})$	8.25	Ringdown	[unpublished]

Inspiral -> Merger -> Ringdown

- First case: 1.5 years (not robust)
- Latest case: worked within days

NR vs PN: Waveforms

Matched at $m\omega \sim 0.04$ (about 24 cycles before merger) $m\omega = 0.063(0.1)$ is about 10(5) cycles before merger

[Boyle, Buonanno, Kidder, Mroué, Pan, Pfeiffer, Scheel; PRD 78, 104020 (2008)]

Lawrence E. Kidder (Cornell)

BH-BH calibrating EOB with NR

BH-BH Future work

Comparison among codes

[Hannam et al;PRD 79, 084025 (2009)]

- Looked at (2,2) mode from equal mass, non-spinning BBH
- Compared results from 5 codes
- Results agreed within numerical accuracies of codes
- Improve robustness of gauge conditions, domain decomposition, constraint damping parameters
- Generate as many long simulations as reasonable to calibrate analytic waveforms and test data analysis pipelines
- Higher spins and more extreme mass ratios
- Improved extraction of gravitational waves

BH-NS binaries

- Collaborators:
 - Cornell: Matthew Duez, Francois Foucart, Lawrence Kidder, Saul Teukolsky
 - Caltech: Christian Ott
- Motivation:
 - Gravitational waves
 - Formation of post-merger disk (short GRB engine?)

First crude efforts

- [Shibata, Uryu; PRD 74, 121503(R) (2006)]
- [Shibata, Uryu; CQG 24, S125 (2007)]
- [Shibata, Taniguchi; PRD 77, 084015 (2008)]
- [Etienne, Faber, Liu, Shapiro, Taniguchi, Baumgarte; PRD 77, 084002 (2008)]
- [Duez, Foucart, Kidder, Pfeiffer, Scheel, Teukolsky; PRD 78, 104015 (2008)]

Recent results

[Shibata, Kyutoku, Yamamoto, Taniguchi; PRD 79, 044030 (2009)] [Etienne, Liu, Shapiro, Baumgarte; PRD 79, 044024 (2009)]

- Effects of mass ratio $q = M_{BH}/M_{NS}$
 - For higher q, expect
 - disruption closer to plunge
 - smaller disk, more BBH-like GWs
 - Studied for $1 \le q \le 5$
- Effects of BH spin $s = S_{BH}/M_{BH}^2$
 - For higher aligned s, expect
 - smaller ISCO leads to larger disk
 - longer inspiral
 - Studied by [Etienne et al (2009)] for s = -0.5, 0, 0.75 (aligned)
 - High s led to big disk
- Effects of compactness $C = M_{NS}/R_{NS}$
 - Studied by [Shibata et al (2009)] for $0.145 \leq C \leq 0.178$
 - More compact star leads to smaller disk, stronger GW signal

BH-NS numerical methods

[Duez, Foucart, Kidder, Pfeiffer, Scheel, Teukolsky; PRD 78, 104015 (2008)] [Duez, Foucart, Kidder, Ott, Teukolsky; unpublished]

- GR handled as with BBH
- Use shock-capturing finite volume for hydro
- 2 grids, interpolation, automated remapping
- fluid grid limited to where the fluid is

BH-NS initial data

[Duez, Foucart, Kidder, Ott, Teukolsky; unpublished]

• $M_{BH} = 3M_{NS}$

- Initial separation 7.5M (at least two orbits of inspiral)
- Eccentricity reduced
- Vary spin
 - $\Gamma = 2$ polytrope, $C = M_{NS}/R_{NS} = 0.15$
 - Vary $s = S_{BH}/M_{BH}^2 = 0, 0.5, 0.9$
- Vary Equation of State
 - s = 0.5
 Γ = 2, C = 0.15
 Γ = 2.75, C = 0.15, 0.18
 - Shen EoS, C = 0.15; advect Y_e or impose β -equilibrium

BH-NS gravitational waves

[Duez, Foucart, Kidder, Ott, Teukolsky; unpublished]

- Spin
 - orbital hangup
 - smear radius

EoS

- large compaction effect
- smaller Γ effect

15/18

BH-NS post-merger disks

BH-NS Future Work

Improved resolution and fluid grid

- Try out multipatch FD for GR to reduce interpolation cost [Pazos, Tiglio, Duez, Kidder, Teukolsky; PRD 80, 024027 (2009)]
- Generic spins, masses, EoS
- MHD (MRI turbulence), ν-transport, nuclear reactions
- Longer inspirals, follow disk longer

Conclusions

- Binary black holes:
 - Can produce long accurate waveforms sufficient for building analytic templates and testing data analysis pipelines
- Black hole neutron star binaries
 - Preliminary results suggest large disks can be formed (also seen by [Etienne, Liu, Shapiro, Baumgarte; PRD 79, 044024 (2009)])
 - Starting to explore effect of NS equation of state