3D GRMHD STMULATIONS OF BLACK HOLE ACCRETION DISKS

Ramesh Narayan

BH Accretion

- Astrophysical black holes nearly always have observable accretion disks around them
- These accretion disks provide information on accretion physics, e.g., different spectral states, enabling us to check our models
- Conversely, observations of disk emission allow us to study the BH: M, a_{*}, event horizon
- Our group has estimated spin parameters of a number of stellar mass BHs in X-ray binaries by fitting the disk spectrum

Our Team

Jeff McClintock Ramesh Narayan Shane Davis, Lijun Gou, Li-Xin Li, **Jifeng Liu, Jon McKinney**, Jerry Orosz, Bob Penna, Mark Reid, Ron Remillard, Rebecca Shafee, Jack Steiner, Sasha Tchekhovskoy

BH Masses and Spins

Source Name	BH Mass (M _ε)	BH Spin (a _*)
LMC X-3	5.9-9.2	~0.25
XTE J1550-564	8.4—10.8	(~0.5)
GRO J1655-40	6.0—6.6	0.65—0.75
M33 X-7	14.2—17.1	0.77 ± 0.05
4U1543-47	7.4—11.4	0.75—0.85
LMC X-1	9.0—11.6	0.85—0.97
GRS 1915+105	10—18	0.98—1

Shafee et al. (2006); McClintock et al. (2006); Davis et al. (2006); Liu et al. (2007); Gou et al. (2009) ; Steiner et al.

Theoretical Model

- Any method of measuring a* is only as good as the theoretical model behind it
- Our method assumes that the accretion disk is well described by the GR disk model of Novikov & Thorne (1973)
- In particular, we assume that the disk luminosity profile L(r) takes the form predicted by the NT model

Novikov & Thorne L(r)

L(r) peaks at a different radius for each value of the dimensionless BH spin parameter a_{*}

Therefore, the observed spectrum depends on a_{*}

This is what enables us to estimate **a*** from observations

Different representations of the luminosity profile

Novikov-Thorne Model

But How Good is the Novikov-Thorne Model?

- The NT model assumes a geometrically thin disk
- It assumes that the "viscous" torque vanishes at the ISCO (Shakura & Sunyaev 1973; Novikov & Thorne 1973)
- But magnetic fields could produce significant torque at and inside the ISCO (Krolik 1999; Gammie 1999)
- Afshordi & Paczynski (2003) suggested that the effect is probably not important for a THIN disk (Shafee et al. 08)
- Can we verify this?

Testing the Novikov-Thorne Model using 3D GRMHD Simulations

3D MHD simulations in the Kerr metric

- Magnetic fields self-consistently generate "viscous" torques via the MRI (Balbus & Hawley 1991)
- We must simulate geometrically thin disks – numerically very challenging
- Reynolds & Fabian (2008); Shafee et al. (2008); Noble, Krolik & Hawley (2009)

Numerical Method

- We use the GRMHD code HARM (Gammie, McKinney & Toth 2003)
- Conservative code, runs in 3D in the stationary Kerr metric
- We add an ad hoc cooling where we specify the target entropy of the gas as a parameter:

$$\frac{du}{d\tau} = -\frac{\Omega_{K} \left(u - u_{\text{target}}\right)}{2\pi}$$

This parameter lets us tune the disk thickness

Our Fiducial Run

- A very thin disk

 (<|h|>/r ~ 0.05)
 around a non-spinning
 BH (a*=0)
- 256 x 64 x 32 grid (φ-wedge angle: π/2)
- Gas is initially in a torus beyond r=20M
- Simulation is run for a time of 17000M
- Steady state after t ~ 12000M

t=0002 M

256 x 64 x 32 Penna et al. (2009)

Mass Conservation

$$\rho u_{;\alpha}^{\alpha} = 0$$
Mass Flux = $\iint \rho u^{r} \sqrt{-g} d\theta d\phi$

$$= M(r) = \text{constant (steady state)}$$
 $\theta \text{ integral} = 0 - \pi : \text{all the fluid}$
 $\theta \text{ integral} = \pi / 2 \pm 2h / r : \text{limited to disk}$

Fiducial Run: Mass Accretion Rate

Penna et al. (2009)

Angular Momentum Conservation

 $T^{\alpha}_{\phi;\alpha}$ = ang mmtm loss via radiation Flux = $\iint \left[\left(\rho + \Gamma u + b^2 \right) u^r u_{\phi} - b^r b_{\phi} \right] \sqrt{-g} d\theta d\phi$ = J(r) = nearly constant $J(r) = J_{in}(r) + J_{out}(r)$ (for comparing with NT) $J_{in}(r) = \iint \left\langle \left(\rho + \Gamma u + b^2\right) u^r \right\rangle \left\langle u_{\phi} \right\rangle \sqrt{-g} \, d\theta \, d\phi$

Our New Fiducial Run (a_{*}=0): Penna et al. (2009)

The results from the two runs appear to be similar. We view the deviations as a measure of the errorbar

The accretion flow becomes quite sub-Keplerian as the disk thickness increases

Angular Momentum: Summary

- Thin disks with h/r<0.1 behave quite a lot like the Novikov-Thorne model</p>
- Deviations are larger for larger values of a_{*}, but the dependence is modest
- However, deviations increase rapidly as the disk thickness increases
- Therefore, the NT model is not trustworthy for thick disks

$$T_{t;\alpha}^{\alpha} = \text{energy loss via radiation}$$

$$Flux = \iint \left[\left(\rho + \Gamma u + b^2 \right) u^r u_t - b^r b_t \right] \sqrt{-g} \, d\theta \, d\phi$$

$$= \overset{\bullet}{E}(r) : \text{increases with radius (radiation)}$$

$$\left(1 - \frac{\overset{\bullet}{E}}{\overset{\bullet}{M}} \right) = \text{Binding energy released per unit mass}$$

$$\frac{dL}{d \ln r} = -\frac{d}{d \ln r} \left(1 - \frac{\overset{\bullet}{E}}{\overset{\bullet}{M}} \right)$$

Fiducial Run: Energy Flux

!!Very Preliminary!!

!!Preliminary Result!!

Cyan: 256 x 64 x 32 (Penna et al. 2009): ~5000M Magenta: 512 x 128 x 32 (Shafee et al. 2008): ~2000M

Thin Disks: different a*

Thicker Disks: a_{*}=0

Distinction between the disk and the plunging region becomes washed out as the disk becomes geometrically thicker

Energy and Luminosity: Summary

- Thin disks with h/r<0.1 seem to behave like the Novikov-Thorne model
- Deviations are larger for larger BH spins, and may be serious as a_{*} → 1
- Deviations increase rapidly as the disk thickness increases
- Accretion luminosity/efficiency is not very different from NT value

Current (very preliminary!) indication: geometrically thin accretion disks behave quite a lot like the Novikov-Thorne model

Suggests that our spin estimates are probably okay...

Source Name	BH Mass (M_{ϵ})	BH Spin (a _*)
LMC X-3	5.9—9.2	~0.25
XTE J1550-564	8.4—10.8	(~0.5)
GRO J1655-40	6.0—6.6	0.65-0.75
M33 X-7	14.2—17.1	0.77 ± 0.05
4U1543-47	7.4—11.4	0.75-0.85
LMC X-1	9.0—11.6	0.85-0.97
GRS 1915+105	10—18	0.98—1