Black Hole Mass Scaling Relations and their Scatter

> Kayhan Gultekin University of Michigan

- Measured the most up-to-date M-σ and M-L relations.
- Measured the intrinsic scatter of the relations.
- Infer Black Hole Density. Worry about bias.
- Radio and X-ray measurements.

Black Holes have mass, spin, and charge.

- Mass: $M_{\rm BH}$
- Spin: *a* (talks by Volonteri, Reynolds, Jon Miller?)
- Charge: q

Black Holes have mass and spin.

- Mass: $M_{\rm BH}$
- Spin: *a* (talks by Reynolds, Jon Miller?)
- How do you measure the mass?

$M_{BH} = \frac{v^2 r}{C}$

Primary, direct measurements.

- Gas dynamical.
- Maser dynamical.
- Reverberation mapping (secondary).
- Stellar dynamical.

Bentz et al. (2009)

Hogg, Blanton, & SDSS

SDSS

WFPC2

3

C

Turn Surface Brightness into Φ

- 1. Pick an inclination: *i*.
- 2. Assume axisymmetry.
- 3. Invert to get luminosity density: $j(r, \theta)$.
- 4. Pick a Mass-to-Light Ratio: Y.
- 5. Calculate mass density: $\rho(r, \theta) = Y j(r, \theta)$.
- 6. To get the potential: $\Phi(r, \theta)$.
- 7. Pick $M_{\rm BH}$ and add to potential.

Calculate orbits of representative stars: Schwarzschild orbit library

van den Bosch et al. (2008)

KG, Richstone, et al. 2009a

KG, Richstone, et al. 2009a

Black hole masses correlate with galaxy properties!

- Velocity dispersion.
- Bulge luminosity / mass.
- Lots of other parameters....
 - Sersic index (not really)
 - $-(M_*\sigma^2)$
 - $-\,\mathrm{M}_\mathrm{bulge}$
 - $-R_{e}$

$M-\sigma$ is a substitute for measuring M

- Reverberation mapping is calibrated to M-σ
 Maybe M-L in the future (Bentz et al. in prep.)
- AGN line-widths are normalized to Reverb. Map
- 48 "real" measurements and lots of extrapolation

M- σ relates to galaxy formation

- Black Holes are small. Velocity dispersion comes from large-scale physics.
- What does it tell us, though?

Some ideas:

- Energy conservation M~σ⁵.
 Silk & Rees (1998); Haenhelt, Natarajan, & Rees (1998); Wyithe & Loeb (2003)
- Momentum conservation $M \sim \sigma^4$.
 - Wind (mechanical): Fabian (1999).
 - Radiation: Fabian, Wilman & Crawford (2002);
 King (2003); Murray, Quatert, & Thompson (2005).

The scatter in M-sigma is not insignificant.

- M-sigma
 - Slope = 4.24 +/- 0.41; Scatter = 0.44 +/- 0.06.
 - Restricting to just Ellipticals reduces the scatter to 0.31 +/- 0.06.
- M-L (early-type only)
 Slope = 1.11 +/- 0.18; Scatter = 0.38 +/- 0.09.
- The *distribution* of the residuals is Gaussian in logarithmic mass.

The *intrinsic* scatter in M- σ relation.

- Another "answer in the back of the book" for theorists.
- Studies of evolution of M- σ relation are biased by the scatter.
- The density of the BIGGEST black holes is dominated by the intrinsic scatter.

Volonteri & Natarajan (2009)

Volonteri & Natarajan (2009)

Nonzero scatter implies more BHs at the high-mass end.

Lauer et al. 2007c

[Blanton 2003 + Postman & Lauer 1995; Sheth et al. 2003 + Bernardi et al. 2006

Nonzero scatter implies more BHs at the high-mass end.

Nonzero scatter implies more BHs at the high-mass end.

The *intrinsic* scatter in M- σ relation.

- Another "answer in the back of the book" for galaxy-formation theorists.
- Studies of evolution of M- σ relation are biased by the scatter.
- The density of the BIGGEST black holes is dominated by the intrinsic scatter.
- Where does the scatter come from?

Resolving the sphere of influence of a BH is not a necessary or sufficient condition for measuring BH mass.

- $R_{\rm infl} = G M_{\rm BH} / \sigma^2$
- S.O.I. does not encode any information about, e.g., spectral resolution.
- Most of the information is inside S.O.I., but not all.

Better spatial resolution gives better error bars, but not a bias!

Rejecting MBH values based on the sphere of influence *does* introduce a bias

- $R_{\rm infl} \sim M_{\rm BH} \,\sigma^{-2}$
- $M_{\rm BH} \sim \sigma^{\beta}$
- So cuts in R_{infl} fall on lines of $R_{infl} \sim \sigma^{(\beta 2)}$

Bias to high intercept.

KG, Richstone et al. 2009b

Bias to high slope.

KG, Richstone et al. 2009b

Bias to low scatter.

KG, Richstone et al. 2009b

- $M\text{-}\sigma$ and M-L relations have been updated, and we measured their scatter.
- Ellipticals follow M- σ more tightly.
- Scatter is important for knowing number density of BHs.
- Scatter implies selection issues for studying evolution of the scaling relations.
- Censoring "under-resolved" BHs is bad.
- L_R, L_X, M fundamental plane.