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Outline:  Relativistic MHD of Black Hole Jets,
Accretion, and Formation

• Four topics, from the outer jet lobes to the hole formation

– M87 knots as MHD shocks in a Poynting-dominated jet
(Nakamura, Garofalo, & Meier; 10 min)

– Simulation of the hard accretion state as a radiatively-cooled
Magnetically-Dominated Accretion Flow (Fragile & Meier;
5 min)

– Numerical Constrained Transport as a Discrete Differential
Geometry technique for evolving everything:  EM & GR fields
plus charge and matter sources (DLM; 10 min)



THE OUTER JET AND LOBES OF M87:
WHAT THEY TELL US ABOUT

JET DYNAMICS

Nakamura, Garofalo, Meier



The Fanaroff & Riley Classification and Correlation

FR I (M 84  /
3C 272.1)

“1” emission
region near
galaxy

FR II (3C 47)

2 emission
regions away
from galaxy

 The Fanaroff & Riley correlation:
 FR Class I sources are low luminosity,
 FR Class II are high luminosity, with

the break at P178 ~ 1025.3 W/Hz/Sr

 The FR I / FR II break is a strong function
of galaxy OPTICAL luminosity (~ Lopt

2)
(Owen & Ledlow, AJ, 112, 9-22, 1996)



Cygnus A and the Blandford-Rees
Hydrodynamic Model for Lobes & Hot Spots

Perley, Dreher,
& Cowan
(1984; VLA)

Hargrave &
Ryle(1974;
5km)

Blandford & Rees’ 1974 hydrodynamic model for the hot spots and lobes has
withstood the test of time:

With only the HR74 map of Cyg A to go
on, they deduced that FR II sources
 were powered by jets
 produced a strong reverse “Mach disk”

 (hot spot) & forward “bow” shocks
 produced a hot cocoon of post-shock

jet material that surrounded the jet
 FR II sources, therefore look like

hydrodynamic (HD) jets

Reverse Shock
(Mach disk)

Bow
Shock

Contact
Discontinuity

Jet

Cocoon

ISM/
IGM



Simulations of MHD Jets

β = 0.2

• 1st 2-D simulations of magnetized jets
performed in 1980s:

– Lind, Payne, Meier, Blandford (1989)
– Clarke, Norman, Burns (1986)

• Results
– Jets with high βp = pgas/pmag ≈  ⅔ (Beq/B)2 >>

1.0  (HD jets) look like an FR II
– Jets with low β ( < 2.0 ) develop fast, leading

“nose cones”, forced forward by a strong
toroidal magnetic field

– Nose cone contains several slow shock pairs

– In general, an FR II radio source does NOT
have the morphology of a magnetized jet with
an equipartition toroidal magnetic field

– How about FR I sources?

R-F

F-F
R-S F-S

Nose Cone

R-S F-S



MHD Simulations of Jets (cont.)

• 3-D simulations of magnetized jets:
– Nakamura & Meier (2004)

• Results
– Even 3-D simulations show a shock system

plus nose cone-like structure
– “Nose cones” are facilitated by
–      Poynting flux domination (1; LPMB; Komissarov)
–      Steeper external pressure gradient (B)
– At late times the slow shock pair develops a

kink instability between the slow-mode shocks



Consequences of FR I Lobe Morphology:  The Case of M87
• If FR II jets are supersonic hydrodynamic jets, then what are FR I sources?

– Model #1: Transonic FR II flows that spontaneously decelerate, inflate, decelerate, …
(Bicknell 1985, 1995)

– Model #2: Modest Mach number flows that decelerate and inflate by interacting with an
external shock (Norman, Burns, Sulkanen 1988)

– Model #3: Magnetically dominated jets that never became fully kinetic
(Nakamura, Garofalo, Meier 2009)

      --- an extraordinary, detailed,
      paradigm-shifting, model

Motivation for MHD model:
• Two knots have very strong

measured magnetic fields:
– Knot HST-1 (Perlman et al. 2003;

10 mG)
– Knot A (Stawarz et al. 2005;

100 µG < B < 1 mG)
• Inter-knot jet particle pressure

<< ambient external pressure
(Sparks et al. 1996)

• A ⇔ C  helical kink
 ⇒ strong magnetic forces in jet



Sparks et al. (1996)
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The M87 Jet as a Poynting-Dominated Flow

1-D Super-Fast, 4-Shock 

MHD M87 Jet Simulation

Stationary Knot

HST-1



Sometime between 2005 December and 2006 February,
the knot HST-1c split into two approximately equally
bright features: a faster moving component
(c1; 4.3c ± 0.7c) and a slower moving trailing feature
(c2; 0.47c ± 0.39c).

Cheung, Harris, & Stawarz (2007) 

HST-1 is essentially stationary (< 0.25c), and it
appears to be the source of successive components,
each of which splits into forward/reverse bright
knots downstream

Our proposed model:

The superluminal components in M87 jet are
•  relativistically propagating internal MHD
shock fronts (not “blobs”)
•  ejected from HST-1, not from the core itself!

(Nakamura, Garofalo, & Meier 2009)

Working on complete M87 model:  more papers to
come …

HST-1



LAUNCHING JETS FROM
THE HARD STATE ACCRETION DISK:

HOW DOES A LOW-LUMINOSITY
ACCRETION FLOW SET UP A

STRONG POLOIDAL MAGNETIC
FIELD AND LAUNCH A JET?

Fragile & Meier



• A new and very important color-magnitude plot:  the FBG diagram
(Fender, Belloni, Gallo 2004) for jet-producing binary X-ray sources

– Like the HR diagram, but in X-rays, and color axis is reversed
– HIGH and LOW refer to 2-10 keV X-ray flux
– High/Soft state at upper left
– Low/Hard state at lower right
– Jet states are at top and right
– Explosive jets occur only on transition from Hard state to Soft state

• A tremendous amount has been learned recently about how actual
observed accreting black hole systems behave when they are
producing jets

– Black holes follow a prescribed path on the X-ray color (soft vs. hard) –
magnitude (low vs. high intensity) diagram:  takes days/hours, not Myr

– Inner radius of cool disk decreases as spectrum becomes softer
(the “truncated disk model”)

– Jet velocity increases as disk spectrum becomes softer

• Implication: In hard state, slow (Γ < 2) jet is NOT launched from
vicinity of black hole, but from 10 -100 rg instead

Very Important Synthesis of Jet-Disk Connection
(BH Accretion States DO MATTER)

Color-magnitude diagram of X-ray source
evolution, and QPO and jet production

[Fender, Belloni, & Gallo 2004]

QPO
freq.

H/S

L/H

VH/I Plateau
(Steady Jets)

(Explosive
Jets)

L/H



• The three stages of MDAF formation, predicted from analytic models
(Meier 2004)

Regular non-radiative (ADAF)
flow forms for r > ~100 rg.

Relativistic electron synchrotron
and Compton cooling are important

when Te > ~109.7 K (r < ~100 rg)

Cooling will reduce thermal
pressure and therefore reduce
plasma β ≡ pgas / pmag ⇒ < 1

(magnetically dominated)

Magnetic domination will
turn off magneto-rotational
instability that drives MHD

turbulence, creating an
inward-facing corona.

Open field lines will create
conditions conducive to driving jets,
but from outer edge of MDAF and

maybe rotational QPOs.

Vjet ~ Vesc
≈ 0.3 c

Tomimatsu & Takahashi (2001); Uzdensky (2004)

•  Final structure should look similar to
    “black hole magnetosphere” models of

 Tomimatsu & Takahashi (2001) and
Uzdensky (2004)

Studies of Cooled Black Hole Accretion Flows and
Possible Development of Jet-Producing Magnetospheres

 (Fragile & Meier 2009)



Studies of Cooled Black Hole Accretion Flows and
Possible Development of Jet-Producing Magnetospheres

(continued)
• We are using Chris’ COSMOS++ code (Anninos,

Fragile, & Salmonson 2005) to test out each stage of
this model

• We added Esin et al. (1996) cooling functions
(Bremsstrahlung, Synchrotron, Comptonization) to
COSMOS++

• Results
– Cooling Does, indeed, produce a strong-field accretion

flow (β → 1) as flow approached black hole
– Results quantitatively agreed with analytic predictions

(“transition region” solution)
– Choice of parameters did not allow strong MDAF, so

now tooling up for β < 1 simulations
• Questions for new simulations

– Does a true black hole magnetosphere form in some
circumstances?  If so, when and what controls its
formation?

– Do the resulting rotating black hole magnetospheres
say anything about jet launching from hard state
objects?



CONSTRAINED TRANSPORT:
A DISCRETE DIFFERENTIAL

GEOMETRY ON A 4-DIMENSIONAL
MANIFOLD

TOWARD
A FULLY INTEGRATED METHOD

FOR SIMULTANEOUSLY EVOLVING
GR AND E&M FIELD PROBLEMS

ALONG WITH THEIR CONSTITUENT
CONSERVATION LAWS

Meier (& Miller)



The Ultimate Goal: Simulate EM Gravitational Collapse

To solve the problem of Electromagnetic Gravitational Collapse, we need to evolve both the
gravitational and electromagnetic fields and their sources (matter and charge)

Neutron Star Binary Coalescence Black Hole Binary Coalescence

∇⋅ J = 0
U ⋅ F = ??

∂ ρq / ∂t + c∇ ⋅ J = 0
E = −V×B/c  (Ohm’s law σ ≡ 1/η → ∞)

Charge/Current

G = 8πG T /c4∇ 2ψ = 4πGρ        [ψ = GM=/r ]Gravity Field

∇ ⋅ (ρ U) = 0
∇ ⋅ T = 0

∂ρ/∂t + ∇⋅(ρV) = 0
∂(ρV)/∂t +∇⋅(ρVV) = −∇p + J×B/ c −ρ∇ψ

∂(ρ e)/∂t + ∇⋅(ρ e V) = − (p + e)∇⋅VMatter

∇ ⋅ *F = 0
∇ ⋅ F = 4π J / c

∂B/∂t + c∇ × E = 0        ∇⋅B=0
 ∂E/∂t − c (∇×B) = − 4π J    ∇⋅E = 4π ρq

EM Field

Non-Relativistic Equations Relativistic EquationsPhysics

⇒



Constrained Transport for MHD
(Evans & Hawley 1988)

• MHD constrained transport:
evolving B  =   − c ∇ × E automatically maintains the constraint ∇•B = 0.

• To do this, one staggers the grid in space and time

– At t = t0, B = ∇ × A and
 ∇•B  =  Bx

+ − Bx 
− + By

+ − By 
− + Bz

+ − Bz
−

       =  (Az4-Az2) – (Ay4-Ay2) – (Az3-Az1) + (Ay3-Ay1)
         + (Ax4-Ax2) – (Az4-Az3) – (Ax3-Ax1) + Az2-Az1)
         + (Ay4-Ay3) – (Ax4-Ax3) – (Ay2-Ay1) + (Ax2-Ax1)  = ∇• ∇ × A = O(εr)

– Then at t = t½, similarly, ∇• ∇ × E = O(εr) , so ∇•B  = O(εr)
– So, at t = t1,

 ∇•B1  = ∇•B0 + Δt (∇•B½) = O(εr)
• So, if we put A on cube edges at t=t0 and E on cube edges at t=t½, we can

evolve B forward in time and keep ∇•B  = O(εr) without any additional effort
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• Actually, a more complete version of CT was invented by an engineer:
the FDTD (finite-difference time-domain) algorithm used in antenna design and analysis

• In full electrodynamics, both of Maxwell’s equations and both of the constraints must be propagated:
B  =   − c ∇ × E ∇•B = 0
E  =      c ∇ × B – 4πJ ∇•E = 4πρq

creating the need for three interlaced updates (one each for E, B, and ρq):

• In 4-D form, the Yee algorithm looks much simpler:

• Staggering the grid implicitly satisfies the Bianchi identities (∇×∇φ = 0; ∇•∇×A = 0)
to machine accuracy, and this implicitly transports the constraints

• Furthermore:  the law of conservation of charge (ρq = – ∇• J) must be solved in a staggered
grid manner in order to properly transport the inhomogeneous constraint and solve the E & M
field

CT for Electrodynamics (Yee 1966)
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Staggered Grids in GR:  A Centered-Differenced
Discrete Differential Geometry (Meier 2004)

• The electrodynamics CT problem suggests a
natural, simple, and elegant method for
staggering finite difference grids in 4-D

• Special cases have interesting forms
– Kronecker delta (δαλ):

4 × 1s at cell corners; 12 × 0s at cube faces
– Other identity tensors (δαβλµ, δαβγλµν ):

±1 at corners; 0 otherwise
– Levi-Civita tensor (εαβγδ):  

± √−g        at hypercube body centers; 0 otherwise
• Gives rise to the concept of a dual mesh

– Shift origin to hypercube-centered point to create the
dual mesh

– εαβλµ IS δαβλµ as viewed from the dual mesh (*δαβλµ)

– As viewed from the dual mesh the Maxwell tensor, the
dual of F (M = *F), is simply F √−g

• To paraphrase J. Wheeler, “A staggerd grid has
deep geometric significance”



Notes on Bianchi Identities in CT for EM & GR
• Centrally-differenced CT is

– Exact for E & M ⎯ to machine accuracy!
• (√-g (√-g Fαβ ),β),α  =  O(εr)

– Exact for GR ⎯ in Rieman-normal coordinates only (Γ = 0)
• Rαβ[γδ , ε]  = O(εr)

– “Almost” exact for GR ⎯ in global coordinates
• Rαβ[γδ ; ε]  ~  ∂2Γ  +  Γ ∂Γ   + Γ Γ Γ
• Γ ∂Γ terms also commute to machine accuracy!
• Γ Γ Γ terms DO NOT commute, BUT THEY NEARLY DO SO

with adaptive gridding and high-order differencing in regions of large Γ
• In order to properly transport constraints without losses (to near machine

accuracy), we need ALL OF THE FOLLOWING
– Gαβ  =  8π Tαβ

– Tαβ  =  Tβα  (T symmetry, since grid staggering ensures Gαβ  =  Gβα)
– Gαβ

;β =  8π Tαβ
;β

• That is, we need the natural symmetries in all the tensors AND we need to
apply the SAME DIVERGENCE OPERATOR to matter and GR fields
alike



• Tests with no sources (Miller & Meier 2005, unpub) :
– Diagonal test (metric Gowdy cosmology):

• CT is stable and convergent, AND nearly equivalent to best finely-tuned methods (BSSN)
– Off-diagonal test in Z (gauge plane wave):

• CT is stable and convergent
– Off-diagonal test in XY (Bondi plane wave):

• CT is stable and convergent but only if Christoffel symbols are evolved as a set in a
srongly hyperbolic manner along with the metric!

– CT by itself, therefore, does not guarantee stability

Practicalities:  Does CT Work for the GR Gauge Field?

Fully Hyperbolic CT:
Evolve Christoffels;

Evolve Metric using Christoffels

Partially Hyperbolic CT:
Evolve Metric; Compute Christoffels Using

Centered Spatial Derivatives of Metric



CT with Field Sources
• Maxwell Field equations

 ∇ • F  = 4π J

• Field sources
 J  = charge-current 4-vector

• Field Bianchi identities
 ∇ • (∇ • F) = 0

• Implied conservation law
 ∇ • J = 0

• Einstein Field equations
G  = 8π T

• Field sources
T  = stress-energy-momentum tensor

• Field Bianchi identities
 ∇ • G = 0

• Implied conservation law
 ∇ • T = 0

And, just as there is a 4-D staggered-grid technique for integrating the
conservation of current,

there also should be a 4-D staggered-grid technique for integrating the
conservation of energy and momentum.

The conservation of
momentum and energy is a

direct result of GR
The conservation of charge is

a direct result of E & M
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Staggered-Grid Algorithms for Fluid Dynamics

• Consider ∇ • T = 0 in flat space
• T  = [ρ + (p + ε)/c2] U UT + p η • Note that the stress-energy-

momentum tensor is symmetric

• That is, the energy flux Txt equals
the momentum conserved variable
Ttx

• So, once the Tij are computed, the
Ttj and Ttt updates fshould ollow
immediately with no additional
effort
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Does CT Work for Fluid Dynamics?
• Tests with no fields (Meier 2009, unpub) :  Simple shock tube

– Lax-Wendroff test (fully centered differencing):
• CT works, but contains oscillations both at shock and contact discontinuity

– Lax-Wendroff plus artificial bulk viscosity:
• CT works, but oscillations still persist at contact discontinuity

– Nakamura 2-step hyperbolic scheme (LW+Godonov):
• Works, but centered differencing must be discarded FOR ALL EQUATIONS.

– Just like the field evolution tests, strongly-hyperbolic evolution algorithms must
be used for all sets of evolution equations



Bottom Line:  Hyperbolic CT Needed

• As a discrete differential geometry, CT has tremendous power and capability

• Central-differenced CT works fine for evolving the sourceless
electromagnetic field

• However, central-differenced CT is unstable in its evolution of the Einstein
field and produces undesirable results in the evolution of its conservation
laws

• To proceed further we need to completely recast CT with hyperbolic, not
central, differential operators

• Mark Miller’s 8th-order difference operators look very
interesting


