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Quickly before we start.....



My 2ct. on Image Processing
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fast-hough-transformation for circles
(or: how to computationally fast turn a black circle into a white spot)
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Compute brightness gradient 
Gives you surface normals
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If you know the radius already:
Walk for one radius length along oppisite direction and you’re at the center

Otherwise: compute intersection
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done
Mark the endpoints and you’re

or just average the vectors



Computational effort:
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Compute gradient
Threshold surface normals
Multiply surface normals by radius
Average computed centers

Hundreds of Megapixel-Frames per Second on Desktop PC from 2010
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Real World Example
Camera Image abs(Gradient)

Hough Identified Particles



8

And now the real talk



Granular Dampers in Microgravity

M. N. Bannerman, J. E. Kollmer, A. Sack, M. Heckel, P. Mueller, and T. Pöschel
Photo: Novespace
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Granular Dampers

+ no anchor required
+ extremely simple
+ slow aging
+ weak dependence on temperature

- lacks good model
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Granular Dampers are efficient when
strong forcing: Dead-Blow Hammer
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or g is low: Satellite Antenna
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 µg experiment
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Source: DLR

Parabolic Flight Maneuver

Hypergravity Micgrogravity Hypergravity

20 Seconds 20 Seconds22 Seconds

1:10 Min
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Microgravity
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Simulation
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Dynamo
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Model

Hard Spheres

No Rotation

No Gravity

Inelastic Collisions



Dynamo
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Model

Box

SpringParticles

Fixed Sidewalls

Mass



23

Event Driven Molecular Dynamics (DEM)

1. Calculate Intersection of Trajectories
2. Advance Time to Moment of Impact
3. Execute Collision
4. Calculate new Trajectories
5. Repeat DYNAMO Sim Package

Particle-Particle Collisions
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Particle-Wall Collisions

Conservation of Momentum
Constant Inelasticity
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Parameters
Particle Diameter 10 from experiment

Particle Mass 4.04 g from experiment

Number of Particles 37 from experiment

Initial Amplitude 107.5 mm from experiment

Unloaded Frequency 1.23 s-1 from material parameters

Container Mass 434 g from experiment

Particle-Particle 
Inelasticity

0.75 fit

Particle-Wall 
Inelasticity

0.76 fit



Video: Sim/Exp
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Dynamics of the 40mm Box with Beads fit
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Dynamics of the 65mm Box with Beads no fit
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Dynamics of the 104mm Box with Beads no fit



valid in µg
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Hard Speres

No Rotation

No Gravity

Inelastic Collisions

Box

SpringParticles

Fixed Sidewalls

Mass

model
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Optimization
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Phase Shift in Position (40mm Box)
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Phase Shift in Velocity (40mm Box)
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FIG. 5: Simulation data for the optimal box length of
Lopt = 333 mm, as predicted using Eq. (12).

C. Oscillator Energies

As the image reconstruction is two-dimensional, the aver-
age enerigies of the particles are difficult to extract experimen-
tally. The accurate determination of the box position allows a
calculation of the box energy; however, as the simulation re-
sults are in excellent agreement (see Sec. IV A) they can be
used directly.

In Fig. 6a, the model predictions for the total energy of the
granular dampner is reported. A stepping of the dampner en-
ergy arises from the decoupling of the dampning granulate
and oscillator at the midpoint of the stroke, which also leads
to the square step in the granulate COM velocity. The decay of
the energy appears to be quadratic in time which corresponds
to a linear decay in the amplitude of the oscillations. This is
not seen in the standard viscously damped oscillator but is a
common feature of frictionally damped oscillators (e.g., see
Ref. [10]). This also appears to hold true for the various com-
ponents of the energies (Fig. 6b). This effect will be explored
in greater depth in following paper where the wider data set is
analysed [5].

The simulations also allow the energy dissipation rates of
the system to be extracted. Figure 7 plots the culmative en-
ergy lost through the three classes of collisions in the system.
The particle-particle interactions dissipate the bulk of the en-
ergies, which is expected as the number of particles results in
a high frequency of this class of interaction. The interactions
with the box ends are crucial in dissipating energy at the start
of the oscillations but play a smaller role towards the tail end
of the decay. The sides of the box are unimportant in these
regular configurations and are an opportunity for optimisation
by using alternative shaker geometries (e.g., an hourglass de-
sign).
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FIG. 6: Simulation predictions for a) the total energies of the os-
cillators and b) the components of the energy for a box length of
L = 40 mm.
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FIG. 7: Simulation predictions for the cumulative energy loss
through interactions with the side walls, end walls and particle-
particle interactions for a box length of L = 40 mm.

V. CONCLUSIONS

In this paper, a method for performing controlled experi-
ments on granular damped oscillators in microgravity is out-
lined. High-speed video capture and image-processing tech-
niques are used to reconstruct the motion of the oscillator to
obtain accurate experimental results. A simple hard sphere
model and event-driven dynamics are also used to generate
quantitative results that compare well against the experimen-
tal values.

A phase shift in the motion of the container and contained
granulate occurs as the granulate decouples in the mid-point
of the stroke.

The straightforward design of these granular dampers
yields a remarkably simple expression for the optimal damp-
ening configuration of the form of Eq. (12). Simulations at
the predicted optimal box length damp large amplitude os-
cillations remarkably well (see Fig. 5) but are susceptible to
smaller amplitude disturbances. Further research is required
to optimise the design and configuration of these dampers by
coupling multiple dampers and optimise the internal geome-
tries to eliminate the decoupling of the granulate in the mid-
point of the stroke.
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L=40mm

Energy Loss
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Energy Loss (40mm Box)



∆E =
m1m2

2(m1 +m2)
(1− �2) (r̂12 · [�v1 − �v2])

2
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Coeffitient of Restitution

Coeffitient of Restitution

Relative Velocity

Particle Masses

Energy Loss
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Simple Analytical Model for Optimisation

Harmonic Box Motion
Particle Cluster as Single Mass

Lopt = π∆0

�
M

M +Nm
+ σlayer

Optimal Box Length Initial Amplitude

Mass of  Box

Size of Particle Cluster
Mass of One Particle

Number of Particles

independent of frequency!
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Test

ammount of initial energy dissipated predicted optimal box length
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Phenomenological
Model
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linear decay in amplitude reminds of
friction-damped oscillator:

8
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FIG. 9: Total energies of the oscillators as obtained from numerical

simulations.

tude force [43] (e.g., a friction-damped oscillator). The equa-

tion of motion for such an oscillator is

Mtot ẍ = −k x− µMtot sgn (ẋ) (18)

where x is the oscillator position, Mtot = M + N m is the

total oscillating mass and µMtot is the magnitude of the con-

stant frictional force. No simple analytical solution exists to

this equation although piecewise solutions may be found [43].

This model does not appear to be appropriate for the gran-

ular damper due to the intermittent nature of the damping

force. For example, the steps in the damper energy (Fig. 9)

arise from the decoupling of the damping granulate and oscil-

lator at the midpoint of the stroke (see Fig. 7) and during these

steps the oscillator experiences no damping force. However,

this model may still be useful in characterizing and comparing

the damping efficiencies of granular dampers in microgravity

through the effective frictional force µMtot.

The effective frictional force of a experimental damper may

be estimated through the decay of the peak amplitude, as given

by

µMtot =
k (∆0 − |xn|)

2n+ 1− (−1)2n
(19)

where n is the index of the amplitude peak and |xn| is the

absolute oscillator displacement for the nth peak. The peak

number n, used to calculate the effective friction coefficient,

should be odd to only sample the amplitude during the “col-

lection” phase of the oscillation and should be as small as pos-

sible for correct measurement of rapid dampers. The earliest

value of n which satisfies these requirements is n = 3, at a

time of t = 1.5/ωsystem. Equation (19) is used to extract an

effective friction force for each experimental system and the

corresponding solutions to Eq. (18) are plotted in Figs. 2–5.

For the non-optimal dampers the model fits the data well. De-

viations begin to appear towards the end of the oscillations as

the “collect and collide” motion begins to break down and the

granulate spreads uniformly over the box. This lends weight

to the argument that the “collect and collide” motion of the

granulate is responsible for the apparent friction-damped be-

havior. For the optimal damper (see Fig. 7), the model does

not fit as well; however, the oscillations are well damped

within 1.5 oscillations and Eq. (19) is only sampled at this

time.

The friction model predicts that the damper comes to a

complete halt after a finite time and fails to capture the per-

sistent small amplitude oscillations (see Fig. 7). Despite this

deviation, the friction deceleration, µ, still appears to be a use-

ful value for comparing the damping efficiency of granular

dampers, as the deviations only appear at low energies.

The quadratic decay of energy with time in a granular

system attached to a linear spring has been reported be-

fore [7, 23, 24, 44]. Surprisingly, the same behavior is found

also for rather different dampers such as thrust-based damp-

ing [45] and impact dampers [46–49]. However, this is not a

general rule and other published results exist (e.g., Ref. [5])

where a non-linear decay of the amplitude of the oscillation

(possibly exponential) is found. This work clarifies that this

apparent frictional behavior may also arise solely from the

collisional granular dynamics and does not necessarily arise

from friction forces within the experimental setup. This is ev-

ident as the simple model used in the simulations reproduces

the linear decay of the amplitude.

VI. CONCLUSIONS

In this paper, a method for performing controlled experi-

ments on granular damped oscillators in microgravity is out-

lined. High-speed video capture and image-processing tech-

niques are used to reconstruct the motion of the oscillator to

obtain accurate experimental results. A simple hard sphere

model and event-driven dynamics are also used to generate

quantitative results that compare well against the experimen-

tal values. From the excellent agreement of the simulation and

experimental frequency, it appears that the damper frequency

responds like a simple harmonic oscillator to changes in load

(Eq. (12)). This is remarkable given the periodic decoupling

of the granulate from the spring and box. The simulation

model scales trivially with the frequency of the oscillations

as, apart from the negligible initial energy, the model has only

one time scale. Further research is required on experimental

systems to determine the frequency dependence of granular

dampers and generalize the current model to these systems.

The straightforward design of these granular dampers

yields a remarkably simple expression for the optimal damp-

ing configuration of the form of Eq. (17). Simulations at

the predicted optimal box length damp large amplitude os-

cillations remarkably well (see Fig. 7) but are susceptible to

smaller amplitude disturbances. The final expression for the

optimal box length is independent of the oscillation frequency,

which may be understood through dimensional analysis of the

model.

Unlike conventional viscous-damped systems, the granu-

lar damped system studied here displays a linear decay in the

amplitude. This behavior is not intuitive and is a feature typi-

cal of friction-damped oscillators. The simulation results and

their excellent agreement with experimental results strongly

suggest that this effect arises solely from the granular dynam-

ics. The linear decay is a useful property as it implies that

a granular damper can completely damp oscillations within

a finite time; however, this is not the case as, at low oscilla-

tion energies a transition occurs and the damping force is sig-

nificantly reduced. Further research is required in designing

constant friction force

total mass

position

- assumes constant damping
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FIG. 9: Total energies of the oscillators as obtained from numerical

simulations.

tude force [43] (e.g., a friction-damped oscillator). The equa-

tion of motion for such an oscillator is

Mtot ẍ = −k x− µMtot sgn (ẋ) (18)

where x is the oscillator position, Mtot = M + N m is the

total oscillating mass and µMtot is the magnitude of the con-

stant frictional force. No simple analytical solution exists to

this equation although piecewise solutions may be found [43].

This model does not appear to be appropriate for the gran-

ular damper due to the intermittent nature of the damping

force. For example, the steps in the damper energy (Fig. 9)

arise from the decoupling of the damping granulate and oscil-

lator at the midpoint of the stroke (see Fig. 7) and during these

steps the oscillator experiences no damping force. However,

this model may still be useful in characterizing and comparing

the damping efficiencies of granular dampers in microgravity

through the effective frictional force µMtot.

The effective frictional force of a experimental damper may

be estimated through the decay of the peak amplitude, as given

by

µMtot =
k (∆0 − |xn|)

2n+ 1− (−1)2n
(19)

where n is the index of the amplitude peak and |xn| is the

absolute oscillator displacement for the nth peak. The peak

number n, used to calculate the effective friction coefficient,

should be odd to only sample the amplitude during the “col-

lection” phase of the oscillation and should be as small as pos-

sible for correct measurement of rapid dampers. The earliest

value of n which satisfies these requirements is n = 3, at a

time of t = 1.5/ωsystem. Equation (19) is used to extract an

effective friction force for each experimental system and the

corresponding solutions to Eq. (18) are plotted in Figs. 2–5.

For the non-optimal dampers the model fits the data well. De-

viations begin to appear towards the end of the oscillations as

the “collect and collide” motion begins to break down and the

granulate spreads uniformly over the box. This lends weight

to the argument that the “collect and collide” motion of the

granulate is responsible for the apparent friction-damped be-

havior. For the optimal damper (see Fig. 7), the model does

not fit as well; however, the oscillations are well damped

within 1.5 oscillations and Eq. (19) is only sampled at this

time.

The friction model predicts that the damper comes to a

complete halt after a finite time and fails to capture the per-

sistent small amplitude oscillations (see Fig. 7). Despite this

deviation, the friction deceleration, µ, still appears to be a use-

ful value for comparing the damping efficiency of granular

dampers, as the deviations only appear at low energies.

The quadratic decay of energy with time in a granular

system attached to a linear spring has been reported be-

fore [7, 23, 24, 44]. Surprisingly, the same behavior is found

also for rather different dampers such as thrust-based damp-

ing [45] and impact dampers [46–49]. However, this is not a

general rule and other published results exist (e.g., Ref. [5])

where a non-linear decay of the amplitude of the oscillation

(possibly exponential) is found. This work clarifies that this

apparent frictional behavior may also arise solely from the

collisional granular dynamics and does not necessarily arise

from friction forces within the experimental setup. This is ev-

ident as the simple model used in the simulations reproduces

the linear decay of the amplitude.

VI. CONCLUSIONS

In this paper, a method for performing controlled experi-

ments on granular damped oscillators in microgravity is out-

lined. High-speed video capture and image-processing tech-

niques are used to reconstruct the motion of the oscillator to

obtain accurate experimental results. A simple hard sphere

model and event-driven dynamics are also used to generate

quantitative results that compare well against the experimen-

tal values. From the excellent agreement of the simulation and

experimental frequency, it appears that the damper frequency

responds like a simple harmonic oscillator to changes in load

(Eq. (12)). This is remarkable given the periodic decoupling

of the granulate from the spring and box. The simulation

model scales trivially with the frequency of the oscillations

as, apart from the negligible initial energy, the model has only

one time scale. Further research is required on experimental

systems to determine the frequency dependence of granular

dampers and generalize the current model to these systems.

The straightforward design of these granular dampers

yields a remarkably simple expression for the optimal damp-

ing configuration of the form of Eq. (17). Simulations at

the predicted optimal box length damp large amplitude os-

cillations remarkably well (see Fig. 7) but are susceptible to

smaller amplitude disturbances. The final expression for the

optimal box length is independent of the oscillation frequency,

which may be understood through dimensional analysis of the

model.

Unlike conventional viscous-damped systems, the granu-

lar damped system studied here displays a linear decay in the

amplitude. This behavior is not intuitive and is a feature typi-

cal of friction-damped oscillators. The simulation results and

their excellent agreement with experimental results strongly

suggest that this effect arises solely from the granular dynam-

ics. The linear decay is a useful property as it implies that

a granular damper can completely damp oscillations within

a finite time; however, this is not the case as, at low oscilla-

tion energies a transition occurs and the damping force is sig-

nificantly reduced. Further research is required in designing

index of amplitude peak

absolute oscillator 
displacement for nth 
peak
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If the system behaves like a simple harmonic oscillator to

changes in mass, then the two frequencies, ω and ωsystem, are

related by Eq. (12). Combining Eq. (12) and Eq. (16) yields

the following expression for the optimal box length

Lopt = π∆0

�
M

M +N m
+ σlayer (17)

This expression is remarkable in that it is independent of the

oscillation frequency. This may be understood from dimen-

sional analysis as, due to the negligible initial kinetic energy,

the model has only one time scale. As such, the solutions to

the model must scale trivially in the frequency of the oscilla-

tions. In the following subsection, the results of Eq. (17) and

its assumptions are checked against simulation results.

B. Numerical Test

The validity of the basic assumptions made in Sec. IV A

and the result, Eq. (17), are now tested using the results of

the DEM simulations. Using Eq. (17) to predict the optimal

box length for the damping of the experimental system yields

a value of Lopt = 311 mm. The results of a simulation at this

box length are presented in Fig. 7. A square step in the gran-

ulate center of mass velocity is visible at the peak of the box

velocity as the granulate decouples from the oscillator. The

assumption of an equal box and granulate velocity at the mid-

point of the stroke (at peak velocity) appears to hold. Visual

inspection confirms the granulate is collected in a layer on the

approaching oscillating wall. The re-collision of the granulate

also appears to occur close to the peak of the box velocity,

maximizing the relative velocity and energy dissipation and

transfer in this first collision. The largest oscillations are ef-

fectively damped within one second; however, the oscillator

is now susceptible to smaller amplitude oscillations which ap-

pear to decay very slowly. The optimal approach would be to

couple two or more dampers to damp a wider range of ampli-

tudes within short timescales. This idea was pursued in Ref. [?
]

Comment:Thorsten: We need this cite.

for the case of impact dampers which is related to granular

dampers, except that in the container or cavity there is only a

single particle.

To test the predictions of Eq. (17) for the optimal damping

length L, a suitable metric must be defined to compare various

box lengths. Figure 8 compares the time an oscillator takes to

dissipate a certain fraction of the initial energy as a function of

the box length. Despite the continuing low-amplitude oscilla-

tions of the damper at L = 311 mm (see Fig. 7), the damper

effectively eliminates 95% of the initial energy in well un-

der two oscillations. Equation (17) appears to yield an excel-

lent estimate for the global optimal box length, avoiding both

the highly inefficient zones towards the edges of the graph.

An alternative metric for comparing the efficiency of granular

dampers is now defined through a phenomenological model

for the damping behavior.
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FIG. 7: A comparison of simulation results, experimental data and

Eq. (18) for the box and granulate (a) position, and (b) velocity as

a function of time for the optimal box length of L = 311 mm, as

predicted by Eq. (17).
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FIG. 8: Simulation results for the time t to dissipate a percentage of

the initial energy, versus the box length L. The vertical dashed line

indicates the optimal box length as predicted by Eq. (17).

V. PHENOMENOLOGICAL MODEL OF GRANULAR
DAMPERS

Figures 2–5 reveal a linear decay of the amplitude of the os-

cillation with time, and thus the energy of the system decays

quadratically in time. This is highlighted in Fig. 9, where the

time dependence of the square root of the total energy of the

damper is plotted. This result is surprising considering the ap-

proximations of the previous section: the oscillator appears to

have a constant frequency, and the oscillator collects the gran-

ulate on a wall and then collides the granulate in each half

period. For the amplitude decay to be linear, the energy dissi-

pated in each of these “collisions” of the granulate must then

be proportional to the amplitude ∆. However, the inelastic

particles used in the model, if given a velocity proportional to

the maximum plate velocity (2π ω∆), would dissipate energy

proportional to the square of the plate amplitude (∆2
).

The result is also surprising as the more common viscous

dampers yield an exponential decay of the amplitude; how-

ever, the only simple damped-oscillator which displays a lin-

ear decay in the amplitude is one damped by a constant magni-
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More Experiments

16 springs simultaniously

forced shaking

measures decay times

measures force needed 
to drive system on a 
given trajectory
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Outlook: Forced Shaking



Outlook: Different Geometry
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Outlook: Different Geometry
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Extra Slide: Electrostatics
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Conclusions
controlled experiments on granular dampers in µg
simple hard sphere model & EDMD compare well to exp.
no frequency dependence
prediction for optimal length
linear decay in amplitude like in friction damping
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Further reading: “Movers and shakers: Granular damping in microgravity”
 (Accepted, PRE 2011)


