

Quickly before we start.....

My 2ct. on Image Processing

fast-hough-transformation for circles

(or: how to computationally fast turn a black circle into a white spot)

Compute brightness gradient

Gives you surface normals

If you know the radius already:

Walk for one radius length along oppisite direction and you're at the center

Mark the endpoints and you're

or just average the vectors

5

Computational effort:

Compute gradient Threshold surface normals Multiply surface normals by radius Average computed centers

Hundreds of Megapixel-Frames per Second on Desktop PC from 2010

Real World Example

Camera Image

7

And now the real talk

Granular Dampers in Microgravity

M. N. Bannerman, J. E. Kollmer, A. Sack, M. Heckel, P. Mueller, and T. Pöschel

Photo: Novespace

Institute for Multiscale Simulation of Particulate Systems

Granular Dampers

+ no anchor required

+ extremely simple

+ slow aging

+ weak dependence on temperature

lacks good model

Granular Dampers are efficient when strong forcing: Dead-Blow Hammer

or g is low: Satellite Antenna

Friedrich-Alexander-Universität Erlangen-Nürnberg

µg experiment

16

Parabolic Flight Maneuver

Source: DLR

Friedrich-Alexander-Universität Erlangen-Nürnberg

comparision granulate/solid mass

time (ms)

Е

OF ADVANCED MATERIALS

Μ

Simulation

Friedrich-Alexander-Universität Erlangen-Nümberg

Hard Spheres

Inelastic Collisions

No Rotation

No Gravity

Event Driven Molecular Dynamics (DEM)

Particle-Particle Collisions

- 1. Calculate Intersection of Trajectories
- 2. Advance Time to Moment of Impact
- 3. Execute Collision
- 4. Calculate new Trajectories
- 5. Repeat

Particle-Wall Collisions

Conservation of Momentum

Constant Inelasticity

Parameters

Particle Diameter	10	from experiment
Particle Mass	4.04 g	from experiment
Number of Particles	37	from experiment
Initial Amplitude	107.5 mm	from experiment
Unloaded Frequency	1.23 s ⁻¹	from material parameters
Container Mass	434 g	from experiment
Particle-Particle Inelasticity	0.75	fit
Particle-Wall Inelasticity	0.76	fit

Friedrich-Alexander-Universität Erlangen-Nürnberg

Experiment

Validation

Dynamics of the 40mm Box with Beads

fit

no fit

Dynamics of the 65mm Box with Beads

no fit

Dynamics of the 104mm Box with Beads

model

valid in µg

Optimization

33

Phase Shift in Position (40mm Box)

Phase Shift in Velocity (40mm Box)

Friedrich-Alexander-Universität Erlangen-Nürnberg

Friedrich-Alexander-Universität Erlangen-Nürnberg

36

Energy Loss (40mm Box)

Coeffitient of Restitution

Simple Analytical Model for Optimisation

Particle Cluster as Single Mass

Harmonic Box Motion

independent of frequency!

Test

Real Test

Phenomenological Model

linear decay in amplitude reminds of friction-damped oscillator:

- assumes constant damping

+ characterize damper through effective frictional force

Outlook

Friedrich-Alexander-Universität Erlangen-Nürnberg

More Experiments

16 springs simultaniously

measures decay times

forced shaking

measures force needed to drive system on a given trajectory

Outlook: Forced Shaking

Outlook: Different Geometry

Outlook: Different Geometry

Outlook: Self Damping Materials

Extra Slide: Electrostatics

Conclusions

controlled experiments on granular dampers in µg

simple hard sphere model & EDMD compare well to exp.

no frequency dependence

prediction for optimal length

linear decay in amplitude like in friction damping

Further reading: "Movers and shakers: Granular damping in microgravity" (Accepted, PRE 2011)

