Local Anisotropy In Globally Isotropic Granular Packings

Kamran Karimi Craig E Maloney

Granular Materials

Tablet Carnegie Mellon

Forces In Granular Materials

Transmission Of Loads : Along "*Force Chains*" Forces Are Highly *Heterogeneous*

Carnegie Mellon

Walk On The Beach Without Sinking: *Forces* in Granular Materials

Veje, Howell, and Behringer, Phys. Rev. E, 59, 739 (1999)

Forces In Granular Materials

2d Shear Experiment

Howell et al (1999)

- Macroscopic Particles
- Forces Are Measurable

Carnegie Mellon

liu et al. (1995) Mueth et al. (1998) . (2003) Majmudar et al. (2005) Zhou et al. (2006)

Biaxial Tester And Photoelastic Particles

Main Questions

• Disorder

Anisotropy And Heterogenity

• Question?

 How To Quantify These Properties In Geometrically Complex Forces?

 Specifically: *Local Anisotropy* Despite *Isotropic Loading*

• Question?

Impact Of Forces In *Elasticity* And *Mechanical Response*

- How Anisotropic Are Elastic Moduli? arnegie Viellon

Apply Globally Isotropic Compression

Previous Work: Study Forces

• Question?

How To Quantify These
Geometrically Complex Forces?

Henkes et al (2009)

Theoretical prediction

Carnegie Mellon

Ostojicet al (2006) -- p=10⁻¹, d=20%, μ =0 $- p=10^{-2}, d=20\%, \mu=0$ $- p=10^{-3}, d=20\%, \mu=0$ p=10⁻⁴, d=20%, µ=0 p=10⁻², d=10%, µ=0 $-p=10^{-2}, d=5\%, \mu=0$ $p=10^{-2}, d=20\%, \mu=0.5$ $p=10^{-2}, d=20\%, \mu=1$ 0.5 - Harmonic, d=20% - Edwards' ensemble Civil & Environmental ENGINEERING

Behringer et al (1999)

Previous Work: Mechanical Response

Inhomogeneous Response, Non-Affine Displacements

Tanguy et al. (2002,2004,2005) Lemaître and Maloney (2004,2006) Williams et al. (1997) Debrégeas et al. (2001) Roux et al. (2002) Kolb et coll. (2003) Weeks et al. (2006)

Model And Protocol

V(

- Discrete Particle Model (LAMMPS)
- Generate Configurations

Start With Random Positions

 \Box Quench At Fixed Φ

• Viscous Damping:
$$\Delta t = 0.1 \sqrt{\frac{\varepsilon}{mD^2}}$$

Bi-Disperse Mixture:
O'Hern et al (2003)

$$N_{A}/N_{B} = 1, D_{A}/D_{B} = 1.4$$

Stress

Coarse-grained Stress

Coarse-grained Quantity

N: Number Of Squares

 ε_S Is NOT Linear!

Carnegie Mellon

Coarse-grained Stress

Locally ε_S Is Large But Globally $\varepsilon_S <<1$!

Local Anisotropy Despite Global Isotropy

Civil & Environmental ENGINEERING

11

Pressure

Compact

 $\phi = 0.89$

Chain-Like Clusters

φ=0.86

Extended

- No Spatial Correlations: $\varepsilon_s \sim 1/R$
- More Anisotropic Closer to Jamming
- *Power-Law* Regime: $\varepsilon_s \sim R^{-0.92}$
- The *Characteristic Length* Grows With $\varphi \varphi c \rightarrow 0$

Average Stress

Rescale R by ξ *and* ε_s *by A*

Diverging Length Scale!

Elastic Moduli

2D Case (Voigt Notation):

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \\ \sigma_{yx} \end{bmatrix} = \begin{bmatrix} C_{xxxx} & C_{xxyy} & C_{xxxy} & C_{xxyx} \\ C_{yyxx} & C_{yyyy} & C_{yyxy} & C_{yyyx} \\ C_{xyxx} & C_{xyyy} & C_{xyxy} & C_{xyyx} \\ C_{yxxx} & C_{yxyy} & C_{yxxy} & C_{yyyx} \\ \varepsilon_{yxyy} & \varepsilon_{yxyy} & \varepsilon_{yxyy} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{xy} \\ \varepsilon_{xy} \\ \varepsilon_{yx} \end{bmatrix}$$

Independent Moduli From Symetries $C_{\alpha\beta\gamma\delta} = C_{\gamma\delta\alpha\beta} \rightarrow 10 \text{ Moduli}$

$$\sigma_{\alpha\beta} = \sigma_{\beta\alpha} \rightarrow 6$$
 Moduli

An *Isotropic* Material: *Lame-Navier* Form Only 2 Constants

 $C^{L} = \begin{bmatrix} \lambda + 2\mu & \lambda & 0 & 0 \\ \lambda & \lambda + 2\mu & 0 & 0 \\ 0 & 0 & \mu & \mu \\ 0 & 0 & \mu & \mu \end{bmatrix}$

Pure Rotation:

 $C_{\alpha\beta\gamma\delta} = C_{\alpha\beta\delta\gamma} \rightarrow 7$ Moduli

Elastic Moduli

Anisotropy in Elastic Moduli

17

Microscopic Elastic Moduli

 OV_{ii}

Born-Huang Approximation:

$$C_{\alpha\beta\gamma\delta}^{Born} = \frac{1}{V} \sum_{ij} (r_{ij}c_{ij} - t_{ij})r_{ij}n_{ij}^{\alpha}n_{ij}^{\beta}n_{ij}^{\gamma}n_{ij}^{\delta}$$
$$c_{ij} = \frac{\partial V}{\partial r_{ij}^{2}} \quad \text{and} \quad t_{ij} = \frac{\partial V}{\partial r_{ij}}$$

For The Disrdered Case

Carnegie Mellon

$$C_{\alpha\beta\gamma\delta} = C^{Born}_{\alpha\beta\gamma\delta} - \frac{1}{V} \Xi_{\alpha\beta} \cdot \mathbf{H}^{-1} \cdot \Xi_{\gamma\delta}$$

Assemble Local Affine Force and Hessian to get full matrices

$$\boldsymbol{\Xi}_{i,\gamma\delta}^{\alpha} = -\sum_{j} (r_{ij} C_{ij} - t_{ij}) n_{ij}^{\alpha} n_{ij}^{\gamma} n_{ij}^{\delta}$$

 $H_{\alpha\beta}^{i} = \sum_{j} (c_{ij} - \frac{t_{ij}}{m}) n_{ij}^{\alpha} n_{ij}^{\beta}$ Civil & Environmental **ENGINEERING**

Elastic Moduli

Coarse-graining

Coarse-grained Quantities

$$\overline{\mathcal{E}}_{m} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{E}_{m}^{i}$$

N: Number Of Squares

 $C_{\alpha\beta\gamma\delta}$ and ε_m Are **NOT** Linear!

On Each Square Region Of Length R

Average Moduli

Conclusion

• In Isotropically Prepared, Frictionless Granular Packings

 Lengthscale Is exhibited By The Anisotropy In The Stress 22

Civil & Environmental

ENGINEERING

 Anisotropy In The Shear Modulus Shows No Characteristic Lengthscale

Thank You!

