Summer School: Granular Materials from Simulations to Astrophysical Applications

Hosted by CSCAMM and the University of Maryland Burgers Program in Fluid Dynamics

Granular Experiments

Wolfgang Losert, Department of Physics University of Maryland

Outline

On Monday

Intro: What are granular materials?

Granular Materials Jam

Granular Materials Age and Strengthen

<u>Today</u>

Granular Gas (Particle tracking) 2D Granular Flow (PIV and flow fields) 3D Granular Flows (3D imaging approaches) Shape Analysis

Granular Gas – 2D particle tracking

An example of a granular gas Energy input into a granular gas

Image analysis

Implementations

Eric Weeks (Emory, IDL) http://www.physics.emory.edu/~weeks/idl/

Dan Blair (Georgetown, Matlab) http://physics.georgetown.edu/matlab/

<u>Steps in 2D particle tracking</u> <u>http://www.physics.emory.edu/~weeks/idl/tracking.html</u> [subtract mean image]

Bandpass

Threshold

Interpolate

Notes on 2D particle tracking

- Interpolation yields location of particle with better than pixel accuracy
- Can distinguish between different particle types (e.g. large and small particles) by the width and height of the interpolated peak
- Be careful about pixelation
- Tracking assumes no mean flow

Velocity Distribution

Velocity distribution best fit by $P(v) \propto v$ in agreement with recent theoretical predictions.

Granular gases have non-Gaussian velocity distribution

Energy of particle mixtures

No Equipartition of energy

Outline

On Monday

Intro: What are granular materials?

Granular Materials Jam

Granular Materials Age and Strengthen

<u>Today</u>

Granular Gas (Particle tracking) 2D Granular Flow (PIV and flow fields) 3D Granular Flows (3D imaging approaches) Shape Analysis

Eur. Phys. J. E **14**, 341–365 (2004) DOI 10.1140/epje/i2003-10153-0

On dense granular flows

GDR MiDi^a

Groupement De Recherche Milieux Divisés, CNRS, GDR2181, France

 $\mu = \mu_s + (\mu_2 - \mu_s)/(1 + I_0/I)$

Inertia Number I

$$I = |\dot{\gamma}| d / \sqrt{\dot{P} / \rho}$$

d: particle diameter ρ: particle density

Steady state flow reached immediatel

Puzzle: Role of the boundary in the localization of the shear band

Rough bottom connected to inner cylinder:

Puzzle: Role of the boundary in the localization of the shear band

Shear Band position depends on particle size

Steady state flow reached immediatel

Contact network depends on jamming history

Isotropic compression

Anisotropic compression

Direct imaging of forces in 2D From Majumdar/Behringer, Nature, 2005

Reversal of shear direction

Falk, Toiya, and Losert

E. Wandersman, J. Dijksman, M. van Hecke

Long Runout Rock Avalanches

The Blackhawk event in California

Field Data: Rock avalanche probabilities are correlated with the direction of prior shear (Friedmann, Kwon & Losert, J. Geophys. Res 2003)

Anisotropic yield surface

Outline

On Monday

Intro: What are granular materials?

Granular Materials Jam

Granular Materials Age and Strengthen

<u>Today</u>

Granular Gas (Particle tracking) 2D Granular Flow (PIV and flow fields) 3D Granular Flows (3D imaging approaches) Shape Analysis

3D imaging approaches

MRI

Jaeger Group University of Chicago

X-ray microtomography Delannay Group, Rennes

Confocal microscopy Refractive Index Matched Scanning (RIMS)

Synchrotron X-ray tomography (with R. Delannay and P. Richard, Univ. Rennes)

Useful for a range of **dry** granular materials

Few images can be taken (large, shared facility, >=10 min per 3D image)

Grain shapes and positions extracted from tomography data. Colored to distinguish particles 10 µm pixel resolution

PHYSICAL REVIEW E 68, 020301(R) (2003)

Analysis by x-ray microtomography of a granular packing undergoing compaction

Patrick Richard,^{1,*} Pierre Philippe,² Fabrice Barbe,³ Stéphane Bourlès,¹ Xavier Thibault,⁴ and Daniel Bideau¹

X-ray tomography images of lunar simulant (M. Toiya, w. R. Delannay and P. Richard, Univ Rennes)

3D imaging approaches

MRI

Jaeger Group University of Chicago

X-ray microtomography Delannay Group, Rennes

Confocal microscopy Laser Sheet Scanning

- Non-spherical amorphous silica particles $2\sim 150\mu m$ and index matching oil produce transparent model soil.
- Imaging by confocal or 2-photon laser scanning microscopy.

Refractive Index Matched Scanning (RIMS)

Refractive Index Matched Scanning of Dense Granular Materials

Joshua A. Dijksman,^{1,2} Frank Rietz,^{3,4,5} Kinga A. Lőrincz,⁶ Martin van Hecke,² and Wolfgang Losert⁷

Submitted to Review of Scientific Instruments

material	index $n20_D$	diameter range [mm]	price	company
soda lime	~ 1.52	0.1-10	++	Sigmund Lindner
crystal	~ 1.59	3	++++	Sandoz Fils SA
borosilicate	~ 1.5	0.1-5	++	Sigmund Linder
fused silica	1.45-1.46	2-3	+++++	Sandoz Fils SA
BK7	1.5168	2-3	+++++	Worf Glaskugeln GmbH
PMMA	1.47-1.50	0.1-10	++++	Engineering Labs/Spherotech
Hydrogel	1.33-1.34	10-100	+	Educational Innovations

solvent	n_D (range)
Triton X-100	1.49
DMSO	1.479
1-Methylnaphthalene	1.615
SodiumPolyTungstate (aq)	1.33 - 1.55
Eugenol	1.541
NaI (aq)	1.33 - 1.502
Methyl Salicylate	1.536
CS_2	1.627
Cargille index matching liquids	1.30-2.11
Cyclohexyl bromide	1.495
Glycerine	1.474
Sucrose (aq)	1.33-1.49
para-Cymene	1.49

dye	λ_{abs} [nm]	λ_{emi} [nm]
Nile Blue 690 Perchlorate	633	650 - 690
Rhodamine 6G	530	555 - 585
Atto 633	633	650
Pyrromethene 597-8C9	525	590
Pyrromethene 567A	523	543

Particle Motion Revealed by Difference Images

- The shear zone extends 3-4 rod diameters ahead of the tip.
- Note the shape of the shear zone.

Confocal Imaging

Schematic Contact network steady shear

Toiya et al. PRL 2004

Observations

- Notable rolling/sliding during steady shear
- Significantly different motion during shear reversal

Masahiro Toiya

3D imaging approaches

MRI

Jaeger Group University of Chicago

X-ray microtomography Delanney Group, Rennes

Confocal microscopy Refractive Index Matched Scanning (RIMS)

Toiya *et al. Granular Matter (2007)* Slotterback *PRL (2008)*

3D convolution (see Gollub/Tsai for 2D version)

Slotterback et al PRL (2008)

Voronoi volume distribution

Compaction through thermal cycling

Dynamics viewed at the particle level

Voronoi volume vs time

Cross section through sample vs time

- A. Rahman, JCP (1966): Computer simulations of local liquid structure Shape of Voronoi volume related to displacement of particles
 - **u** vector pointing toward center of voronoi vertices
 - v displacement of particle at following time step.
 - θ Angle between **u** and **v** (in three **v** dimensions) **uv**

Voronoi vertices

Slotterback et al PRL (2008)

From the perspective of the particle View along u vector

Vertices of Voronoi volume =
"Escape directions" of particle from local cage

Aging/Strengthening in Astrophysics?

 \bigcirc

DEMO

Thermal Cycling on the Moon Daytime: +120°C Night: -150°C [lunarpedia.org]

The pole is a regions not exposed to thermal cycling. Will it be equally compacted?

Steven

Toiya et al. Granular Matter (2007) Slotterback PRL (2008)

3D imaging of flow - continuum flow fields

Move bottom disk in 3^o slowly Stop to take a 3D picture

J. Dijksman, E. Wandersman, S. Slotterback, C. Berardi, M. van Hecke, W. Losert PRE 060301 (2010)

J. Dijksman, E. Wandersman, S. Slotterback, C. Berardi, M. van Hecke, W. Losert PRE 060301 (2010)

Convection Rolls during "step"-flow

Joost

Large Particles ullet

Small Particles

Characterizing motion of two neighboring particles: Angle α

Steven Slotterback

Motion of nearby particles in steady shear

Region of Interest

Disk Edge +/- 3 D

 $dr \le 1.04 \text{ D} \rightarrow$ "Touching" $dr > 1.04 \text{ D} \rightarrow$ "Not-Touching"

Which particles are neighbors?

Granular flow on the mesoscale

 Quantification of mesoscale structure and dynamics?

Network characterization of granular **dynamics**

Mark Herrera

Persistent Network	Broken Link Network	
	Reference Frame	

Experimentally observed fraction of broken links used as input in the model

Breaking probability ~local longitudinal strain

Giant Component of the Network

Percolation transition

Cumulative Size distribution

Clustering Coefficient

Data are more clustered

Peak to Peak Amplitude 10° (~1.5 D) 2° steps between frames

Contrast enhanced for easy viewing

3D reconstruction ¹/₄ of the system Credit: Mitch Mailman

3D imaging approaches

MRI

Jaeger Group University of Chicago

X-ray microtomography Delannay Group, Rennes

Confocal microscopy Refractive Index Matched Scanning (RIMS)

Outline

On Monday

Intro: What are granular materials?

Granular Materials Jam

Granular Materials Age and Strengthen

<u>Today</u>

Granular Gas (Particle tracking) 2D Granular Flow (PIV and flow fields) 3D Granular Flows (3D imaging approaches) Shape Analysis

Forces in Astrophysical Applications

Holding Granular Matter together:

Gravity Van der Waals Charges <u>Rearranging Granular</u> <u>Matter:</u>

Tidal forces Seismic forces Centrifugal forces