Summer School: Granular Materials from Simulations to Astrophysical Applications

Hosted by CSCAMM and the University of Maryland Burgers Program in Fluid Dynamics

Segregation

Wolfgang Losert, Department of Physics University of Maryland

Outline

- Binary Mixture Slow Shear
- Binary Mixtures in Tumblers
- Polydisperse Tumbler Flows
- Polydisperse Materials under Vertical Vibration

Steven

Toiya et al. Granular Matter (2007) Slotterback PRL (2008)

3D imaging of flow - continuum flow fields

Stop to take a 3D picture

Segregation in systems with two particle Sizes

Joost Weijs University of Twente

Convection Rolls during "step"-flow

Joost

• Large Particles

• Small Particles

-Top of shear zone. fraction

Neighbors

• Looking at *all* large particles, how does the *average* number of neighbors evolve?

Dynamics of Segregation

Blue area segregates within 20 rotations, dark red area has not segregated after 600 rotations

Outline

- Binary Mixture Slow Shear
- Binary Mixtures in Tumblers
- Polydisperse Tumbler Flows
- Polydisperse Materials under Vertical Vibration

Segregation in a tumbler

Model System: Rotating Drum

Velocity Profile

Linear decrease in velocity, no transition from large to small particles.

Radial segregation is not strong.

Radial and Axial Segregation

Michael Newey

Supported by NASA and NSF-CTS

Axial banding~ 50-100 revolutions

Radial segregation ~ 3-4 revolutions

What processes drive axial band formation?

Connection between axial banding and radial segregation

Particle Speed on Surface

Particle Tracking:

*We can distinguish between large and small particles.

≻Z

A)

Number of small particles visible on surface

Laser line angle over a band

*Flowing angle lower over a small particle band.

Is drift in the direction of steepest descent?

Drift is in the direction of steepest descent at the bottom

Velocity proportional to concentration of small particles

Newey, Losert, JSTAT, to appear

Particle Speed on Surface

Downhill Velocity, II

Velocity increases before number of small particles on surface increases

-> Velocity depends on subsurface small particles Time

Top and bottom are at different granular temperature

Top - Particle acceleration - low temperature Bottom - Particle deceleration - high temperature

Outline

- Binary Mixture Slow Shear
- Binary Mixtures in Tumblers
- Polydisperse Tumbler Flows
- Polydisperse Materials under Vertical Vibration

Ternary mixtures

Green/blue = 0.5 mm Gold = 1.0 mm Red = 2.0 mm

*Band within band formation

Europhysics Letters, 2004

Oscillating patterns

Oscillations

Quaternary Mixtures: Bands Within Bands Within Bands

not as pronounced.

Bands disappear at rotation rates below 15 rpm. Process is reversible.

Mixtures of 5 or More Particle Sizes

*Pronounced radial segregation observed, but no axial bands formed.

*Initially pre-segregated axial bands quickly disappear. *WHY no bands?

Outline

- Binary Mixture Slow Shear
- Binary Mixtures in Tumblers
- Polydisperse Tumbler Flows
- Polydisperse Materials under Vertical Vibration

Convection under vertically shaking

Convection

Binary mixture (1mm and 4mm):
Slightly higher density
No qualitative change in behavior

Monodisperse: 1mm glass spheres

Vertical Excitation 50 Hz, 11 g

Polydisperse Mixtures

- Mixture of particles glass beads 30 micron – 14 mm Diameter
 - Very dense packing possible in principle

Questions:

- When will the system pack densely, when will it segregate?
- Effect of multiple lengthscales?
 - 2.5 orders of magnitude in particle radius r
- Effect of multiple energy scales?
 - 10 orders of magnitude in characteristic energy m*g*r

Part of a 3D appolonian packing

M. BORKOVEC and W. DE PARIS, R. PEIKERT, *Fractal*s, Vol. 2, No. 4 (1994) 521-526

Polydisperse mixture vertically shaken at 50 Hz

Mixture of 10 sizes: (450 g each)

14mm 8mm 4mm 2mm 1mm 0.6 mm 0.35 mm 0.085 mm 0.055 mm 0.030 mm

System mixes for a finite range of frequencies and amplitudes

Reversible segregation

Segregation by size when shaken below threshold frequency (~ 20 Hz)

Segregation accompanied by dilation

Role of Mixing Ratio

Total mass of particles of size r:

 $m(r) \sim r^{3} * N(r)$ 0.85 -N(r): Number of particles with radius r 0.80 packing fraction $N(r) \sim r^{-D}$ $m(r) \sim r^{3-D}$ 0.75 0.70 **D:** Mixing ratio D=3 Equal mass packing 0.65 D=0: Equal number of particles for 0 each radius D=2.3 ~ Applolonian Packing (optimal packing) D=2.6 observed in geology

