
JPL
NSF
TRW

AFOSR 
DARPA

Lockheed Martin

Oscar P. Bruno
Caltech

New high-order, high-frequency methods in 
computational electromagnetism



Governing Equations



• High-frequency, high-order, O(1) integral solvers

– Single scattering ………(Bruno, Geuzaine and Monro, [2002-05])

– Multiple scattering ……………(Bruno and Reitich, [2002-05])

– Volumetric……………………………(Bruno and Chaubell, in progress)

• Fast surface solvers ……(Bruno, Kunyansky and Paffenroth, [2001-05])

– Regular-surface, singular-kernel integration 

– Acceleration

– Singular surfaces and kernels

• Volumetric scattering

– Large Volumes ………………………(Bruno and Hyde, [2004-05])

• High order surface representation………(Bruno & Pohlman, [2004-05])

Topics



Simplest scattering integral equation example
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High Frequencies:
Phase extraction

ö(x) = öslow(x)e
ikxAnsatz:
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Highly oscillatory



• Melrose & Taylor, [1985], theoretical considerations

• Abboud, Nédélec & Zhou, [1994], O(k2/3) operations

• Lagreuche and Bettess, [2000], O(k2/3) operations

• O(1) operations
• Convex and non-convex scatterers 
• High-order

Present Approach

Previous Work
(Convex scatterers)



Is           actually slow?

Key: Physical Density!



Integration exerciseZ
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cos(x0)dx0

Critical points
(phase gradient = 0)

Target Point

Highly oscillatory

O(1)-methods for high-frequency scattering

• Critical points?
• Asymptotically? Want convergence!!
• Idea: Why compute integral at other points?



Thus our proposed approach:
Localized Integration
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for all n!
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Target Point



Issues
• Kernel Singularities

• Surface Representation

• Shadow Boundaries

• Creeping-Waves, Diffraction

• Multiple Scattering

• Three-dimensionality

• Corners, Edges
… but first… trapezoidal rule!



Fourier Series and High-order Integration and the 
Trapezoidal Rule



Issues
• Kernel Singularities

• Surface Representation

• Shadow Boundaries

• Creeping-Waves, Diffraction

• Multiple Scattering

• Three-dimensionality

• Corners, Edges



Resolution of singularities
(Basic, high-order solver; adjacent interactions)

A polar-coordinate jacobian regularizes 
the integration problem

3

…TOGETHER with an acceleration strategy…



Equivalent Sources
(Acceleration; Non-adjacent interactions)



C. Labreuche, “A convergence theorem for the fast 
multipole method for 2-dimensional scattering 
problems”, Math. Comp. 67, 553-591 [1998]



Large spheres
(comparison w/ O(N log(N)) FISC)

Singular Scatterers



Issues
• Kernel Singularities

• Surface Representation

• Shadow Boundaries

• Creeping-Waves, Diffraction

• Multiple Scattering

• Three-dimensionality

• Corners, Edges



High-Order Surface Representation

Bruno, Han and Pohlman, in progress



Generation of Smooth Surfaces
A problem of present interest in the computer science literature



Present Approach

– Unequally spaced FFTs (USFFT), and

– A “Continuation Method” for trigonometric 
representation  of non-periodic functions with 
spectral accuracy (thus, overcoming the Gibbs 
phenomenon)

Interpolation via Fourier series, using



Intrinsic Parameterizations

Desbrun, Meyer and Alliez, [2002]



Direct FFT: 
Gibbs phenomenon

Double-period continuation:
oscillations

Continuation and 
smoothing!

POUs for boundary regions (Gibbs resolution)
Fourier Representation

Given data



Generalizes to any number of dimensions!

Fourier Representation

Also useful for coarse inner discretizations.
Does not require domain to be a square!!!!



• Majda, McDonough, Osher, 1978 (Filtering of high-order 
Fourier coefficients)

• Mock and Lax, 1978 (Integration rule based on “Chebyshev-
like” quadrature points)

• Gottlieb and Tadmor, 1985 (Smoothing)

• Gottlieb and Shu, 1992 (Gegenbauer Polynomials)

• Geer and Banerjee, 1994 (Built in singularities, requires 
knowledge of jumps in function and derivatives)

• Geer, 1995; Fornberg 2000 (Pade approximants)

• Gelb and Tanner, 2004 (New re-projection basis)

Fast convergence of Fourier Series
of discontinuous functions

(Elimination or amelioration of the Gibbs phenomenon)



Gegenbauer Polynomials Present approach: continuation



Falcon















Issues
• Kernel Singularities

• Surface Representation

• Shadow Boundaries

• Creeping-Waves, Diffraction

• Multiple Scattering

• Three-dimensionality

• Corners, Edges



Shadow Boundary: Is           actually slow?

Creeping waves! Diffraction!



Cubic root ratios in the slow-density slopes
around shadow boundaries

# of Fourier modes needed to represent              with a fixed accuracy



Multiple Scattering
Automatic Multiple reflections

Ansatz Generation!!!

Bruno & Reitich  [2003]



Isolated 
Obstacles

First 
Reflections

Second 
Reflections

Implementation: Multiple reflections
High-Frequency Integral Equation Method



Enhanced Convergence
Acceleration by analytic continuation

Bruno & Reitich  [2004]



A Convergent High-Frequency Approach
Acceleration by analytic continuation

Analytic 
continuation 

• Sum series outside radius of convergence

• Accelerate convergence inside 

e.g. Pade approximation



Multiple scattering + diffraction!



Bruno and Reitich, [2004]

Diffraction ansatz



Issues
• Kernel Singularities

• Surface Representation

• Shadow Boundaries

• Creeping-Waves, Diffraction

• Multiple Scattering

• Three-dimensionality

• Corners, Edges



A polar-coordinate Jacobian – same as 
previously

Three Dimensional Problem (Preliminary!)



Fixed

Use “Canonical Integrals”:
Re-express in the form

Bruno and Geuzaine, [2005]

Smooth 
(indep. of  k)Critical points near shadow boundaries!

Slow





Issues
• Kernel Singularities

• Surface Representation

• Shadow Boundaries

• Creeping-Waves, Diffraction

• Multiple Scattering

• Three-dimensionality

• Corners, Edges



Singular surfaces 
Example: Double layer potential 

(soft acoustic scattering)

Non-integrably singular



Integrable kernels are still nearly singular:
1-d-canonical integration



OB and R. Paffenroth [2004]

Solution: “1-d-canonical integration”
of nearly-singular kernel



Point source slightly off-center

Plane wave incidence

Cylinder of radius 1 and height 1

(Normalized Max. Error = max. of field-error on 
a sphere of radius 2 divided by max of field)



a) Point source,  k=10

b) Plane wave incidence, k=10

Cylinder of radius 1 and height 1



Current along a radius

distance from the edge



Current along a radius – focus near the edge



Current along a radius – focus near the edge



Point-source incidence (exact solution known)

Plane-wave incidence
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OB and J. Chaubell, in progress

Computational cost of evaluation of the High-Frequency integral

Occultation Retrievals: a high-frequency 
penetrable scattering problem



Antenna (wire) problem
Surface and 

wire currents

Sphere and wire, k = 0.5, dist = 5.0e-3

Far Field

ExperimentComputation

Experiments by Cable and
Blezyunk, JPL, 2005



Previous state of the art: Davies et. al. (2001) J Comput Phys 168: 155-183. 
Require N = 700 for O(10-5) maximum relative errors.

A B

Wire problem
Method: Canonical integration

OB and M. Haslam [2005]



High Frequency and Caustics

Bruno, Sei and Caponi



Application: High Frequency and Caustics

Experimental Numerical 

Bruno, Sei and Caponi



DROP: Far Field; ka = 1000



Example: 
Combined Field IE



Convergence (Combined Field IE)



Preliminary numerical results 
Single processor runs (1.7GHz pentium IV) 

No code optimizations

OB and C. Geuzaine [2005] (preliminary)

Surface current error. Far field error 
should be one-to-two digits smaller.



à A Aà ε ε

Recap
1) Convergent O(1) High-Frequency Integral Method

2) Basic integration methods, surface representation and other 
issues addressed by means of novel Fourier-based approaches

High-order 
stationary phase
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