New high-order, high-frequency methods in computational electromagnetism

Oscar P. Bruno Caltech

> JPL NSF TRW AFOSR DARPA Lockheed Martin

$$Governing Equations$$

$$Plane \\ wave \\ \hline \psi(\mathbf{r}) + k^2 \psi(\mathbf{r}) = 0$$

$$\nabla \times E = i\omega \mu H$$

$$\nabla \times H = -i\omega \varepsilon H$$

$$\frac{1}{2}\varphi(\mathbf{r}) + (K\varphi)(\mathbf{r}) - i\gamma (S\varphi)(\mathbf{r}) = \psi^i(\mathbf{r}), \quad \mathbf{r} \in \partial D$$

$$\Phi(\mathbf{r}, \mathbf{r}') = e^{ik|\mathbf{r} - \mathbf{r}'|}/4\pi |\mathbf{r} - \mathbf{r}'|$$

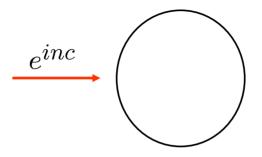
$$(K\varphi)(\mathbf{r}) = \int_{\partial D} \varphi(\mathbf{r}') \frac{\partial}{\partial \nu(\mathbf{r}')} \Phi(\mathbf{r}, \mathbf{r}') dS(\mathbf{r}')$$

$$(S\varphi)(\mathbf{r}) = \int_{\partial D} \Phi(\mathbf{r}, \mathbf{r}') dS(\mathbf{r}')$$

• *High-frequency, high-order, O(1) integral solvers*

- Single scattering(Bruno, Geuzaine and Monro, [2002-05])
- Multiple scattering(Bruno and Reitich, [2002-05])
- Fast surface solvers(Bruno, Kunyansky and Paffenroth, [2001-05])
 - Regular-surface, singular-kernel integration
 - -Acceleration
 - Singular surfaces and kernels
- Volumetric scattering
- High order surface representation......(Bruno & Pohlman, [2004-05])

Simplest scattering integral equation example



$$\int_{S} \Phi(x, x') \mu(x') dx' = e^{ikx}$$

$$\Phi(x, x') = \begin{cases} H_0^1(k|x - x'|) & \text{in two dimensions} \\ e^{ik|x - x'|}/|x - x'| & \text{in three dimensions} \end{cases}$$

$$High Frequencies:$$

$$\underline{Phase extraction} \stackrel{e^{ikx}}{\longrightarrow} \int_{S} H_{0}^{1}(k|x - x'|)\mu(x')dx' = f_{slow}(x)e^{ikx}$$

$$Ansatz: \quad \mu(x) = \mu_{slow}(x)e^{ikx}$$

$$Highly oscillatory$$

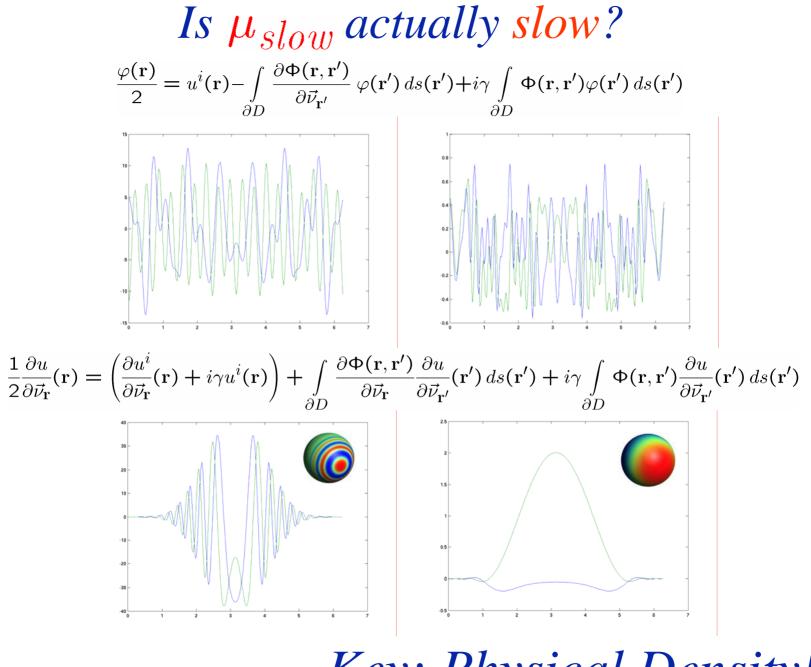
$$\int_{S} \left[H_{0}^{1}(k|x - x'|)e^{ik(x'-x)}\right]\mu_{slow}(x')dx' = f_{slow}(x)$$

Previous Work (Convex scatterers)

- Melrose & Taylor, [1985], theoretical considerations
- Abboud, Nédélec & Zhou, [1994], $O(k^{2/3})$ operations
- Lagreuche and Bettess, [2000], $O(k^{2/3})$ operations

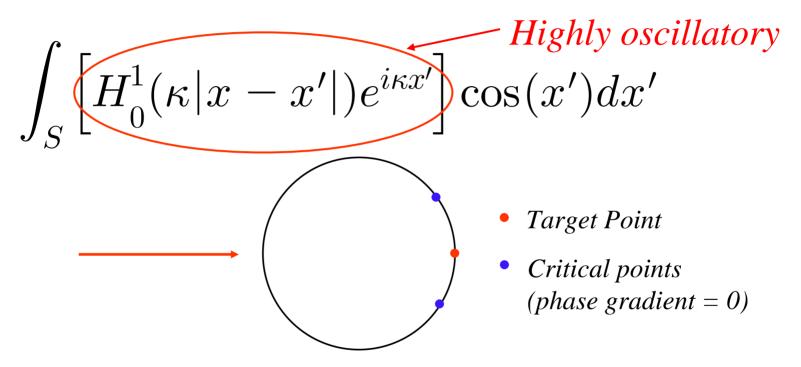
Present Approach

- O(1) operations
- Convex and non-convex scatterers
- High-order

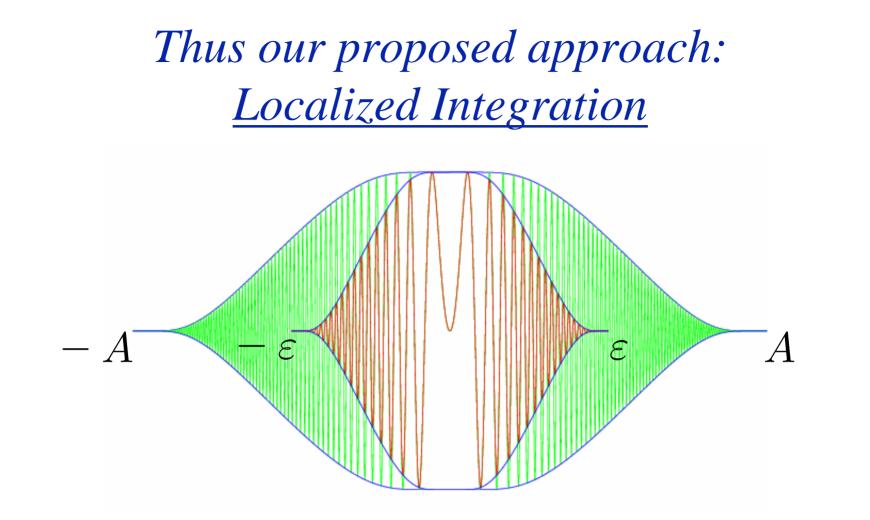


Key: Physical Density!

O(1)-methods for high-frequency scattering Integration exercise



- Critical points?
- Asymptotically? Want convergence!!
- <u>Idea</u>: Why compute integral at other points?



 $\int_{-\varepsilon}^{A} f_A(x) e^{ikx^2} = \int_{-\varepsilon}^{\varepsilon} f_{\varepsilon}(x) e^{ikx^2} + \mathcal{O}((k\varepsilon^2)^{-n})$

for all n!

Integration exercise

$$\int_{S} \left[H_{0}^{1}(\kappa | x - x'|) e^{i\kappa x'} \right] \cos(x') dx'$$
• Target Point
• Critical points
(phase gradient = 0)

κ	N	ϵ	c	Error
1000	2100	1.0	0.5	1.5e-6
2000	2100	0.5	0.5	4.8e-8
4000	2100	0.25	0.5	1.2e-7
8000	2100	0.125	0.5	9.8e-7
16000	2100	0.0625	0.5	1.5e-6

Issues

- Kernel Singularities
- Surface Representation
- Shadow Boundaries
- Creeping-Waves, Diffraction
- Multiple Scattering
- Three-dimensionality
- Corners, Edges

... but first... trapezoidal rule!

Fourier Series and High-order Integration and the Trapezoidal Rule

 $\int_0^1 \sqrt{x} dx$

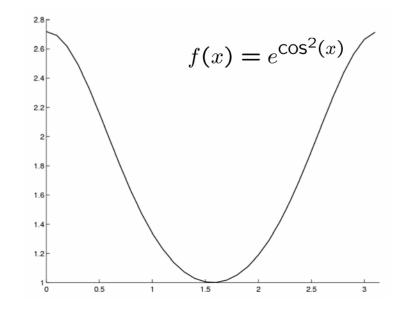
 $r^{\frac{\pi}{4}}e^{\cos^2(x)}dx$

 $e^{\cos^2(x)}dx$

N	Rel. Error	Ratio
1	2.5(-1)	
2	9.5(-2)	2.6
4	3.5(-2)	2.7
8	1.3(-2)	2.7
8192	4.2(-7)	

N	Rel. Error	Ratio	
1	4.8(-2)		
2	1.2(-2)	4.0	
4	2.9(-3)	4.0	
8	7.4(-4)	4.0	
8192	7.0(-10)		

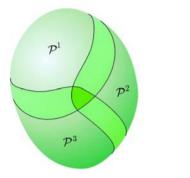
N	Rel. Error	Ratio
1	5.5(-1)	
2	6.0(-2)	9.1
4	3.1(-4)	1.9(+2)
8	7.2(-10)	4.3(+5)
16	2.1(-23)	3.4(+13)



Issues

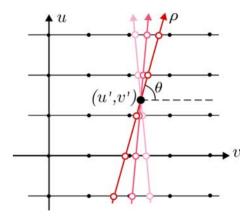
- Kernel Singularities
- Surface Representation
- Shadow Boundaries
- Creeping-Waves, Diffraction
- Multiple Scattering
- Three-dimensionality
- Corners, Edges

Resolution of singularities (Basic, high-order solver; adjacent interactions)



$$\cos k \left| \mathbf{R} \right| \frac{\mathbf{R} \cdot \boldsymbol{\nu}(r)}{\mathbf{R}^3}$$

A polar-coordinate jacobian regularizes the integration problem

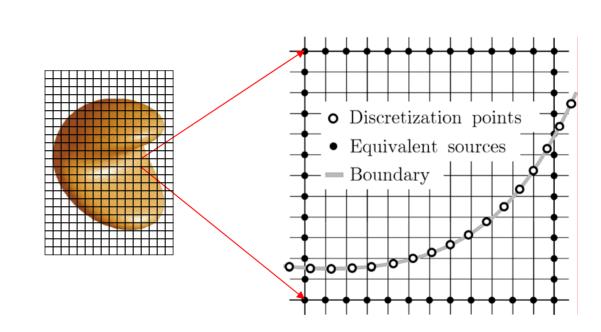


$$L(u',v',\theta) = \int_{-r_1}^{r_1} f_k^*(\rho,\theta) \frac{|\rho|}{|\mathbf{R}|} \cos k |\mathbf{R}| \frac{\mathbf{R} \cdot \boldsymbol{\nu}(r)}{\mathbf{R}^2} d\rho$$

... TOGETHER with an acceleration strategy...

Equivalent Sources

(Acceleration; Non-adjacent interactions)



$$\frac{e^{ik|\mathbf{r}-\mathbf{r}'|}}{4\pi|\mathbf{r}-\mathbf{r}'|} = ik\sum_{n=0}^{\infty}\sum_{m=-n}^{n}h_n^{(1)}(k|\mathbf{r}|)Y_n^m(\mathbf{r}/|\mathbf{r}|)j_n(k|\mathbf{r}'|)\overline{Y_n^m(\mathbf{r}'/|\mathbf{r}'|)}$$

Remark 5. The last theorem proves the convergence of the discretized approximated kernel which is used numerically. Unfortunately, because of roundoff errors, this convergence is not numerically attained...

$$G(x; x') \approx G_N^D(x; x0) := \frac{1}{2\pi N_T} \sum_{n_T=1}^{N_T} e^{(ik(x-z_i) \cdot U(\theta_{n_T}))} \cdot e^{(-ik(x'-z_j)U(\theta_{n_T}))} \cdot \left[\sum_{m=-N}^{N} e^{(im(\theta_{n_T} - arg(z_i - z_j)))} K_{|m|}(-ik|z_i - z_j|)\right]$$
(6)

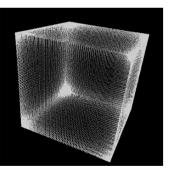
$$\left(\theta_{n_T} = \frac{2\pi}{N_T} n_T\right)$$

The main difficulty we face in studying Rokhlin's method lies in the fact that, even if from a theoretical point of view (see Theorems 2, 4, 6 and 7) the greater N the more accurate the approximation, N must (in numerical simulations) belong to a fixed range of integers. If N is too small, the overall accuracy is not good, which is quite logical. But if N is too large, then (6) is not numerically accurate... Hopefully, there is a range of integer values N such that the accuracy of Rokhlin's formula (6) is quite good...

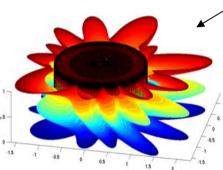
> <u>C. Labreuche</u>, "A convergence theorem for the fast multipole method for 2-dimensional scattering problems", <u>Math. Comp.</u> 67, 553-591 [1998]

Large spheres (comparison w/ O(N log(N)) FISC)

Algorithm	Diameter	Time	RAM	Unknowns	RMS Error	Computer
FISC	120λ	32 imes 14.5h	26.7 <i>Gb</i>	9,633,792	4.6%	SGI Origin 2000
						(32 proc.)
Present	80λ	55h	2.5 <i>Gb</i>	1,500,000	0.005%	AMD 1.4GHz
						(1 proc.)
Present	100λ	68 <i>h</i>	2.5 <i>Gb</i>	1,500,000	0.03%	AMD 1.4GHz
						(1 proc.)



Singular Scatterers

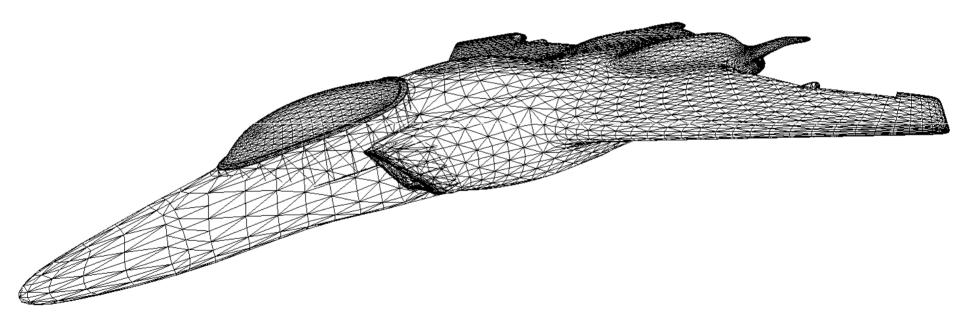


Geometry	Diameters	Time	Unknowns	RMS Error	Computer
Cube	$10\lambda imes 10\lambda imes 10\lambda$	21 <i>h</i>	96,774	0.049%	AMD 1.4GHz
(Present work)					(1 proc.)
Flying Saucer	$42\lambda imes 42\lambda imes 17\lambda$	53 <i>h</i>	290,874	0.0045%	AMD 1.4GHz
(Present work)					(1 proc.)

Issues

- Kernel Singularities
- Surface Representation
- Shadow Boundaries
- Creeping-Waves, Diffraction
- Multiple Scattering
- Three-dimensionality
- Corners, Edges

High-Order Surface Representation



Bruno, Han and Pohlman, in progress

Generation of Smooth Surfaces A problem of present interest in the computer science literature For general irregular triangulations, previous methods produce (at best) C^1 surfaces only

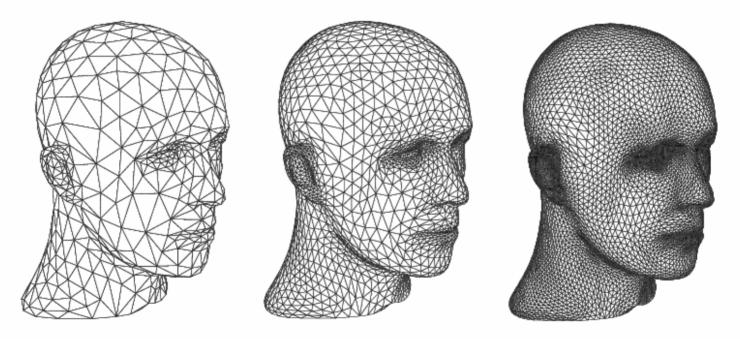


Figure 4. Two-dimensional loop subdivision is used to generate smooth surfaces from a coarse description.

Daubechies, Guskov, Schröder and Sweldens, [1999]

Present Approach

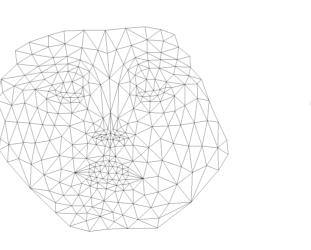
Interpolation via Fourier series, using

- Unequally spaced FFTs (USFFT), and

 A "Continuation Method" for trigonometric representation of non-periodic functions with spectral accuracy (thus, overcoming the Gibbs phenomenon)

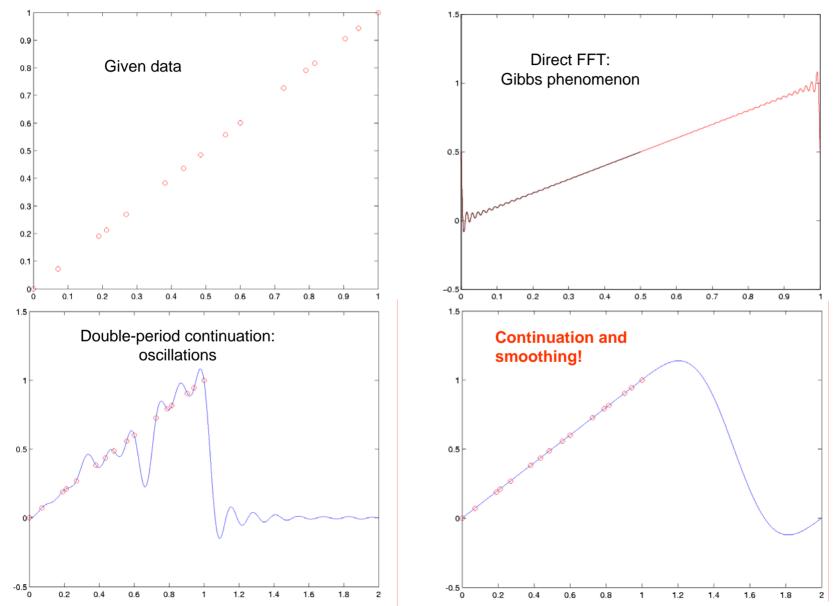
Intrinsic Parameterizations



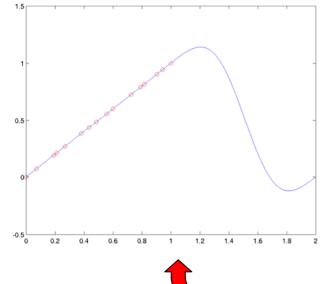


Desbrun, Meyer and Alliez, [2002]

Fourier Representation POUs for boundary regions (Gibbs resolution)



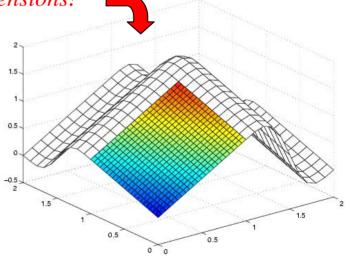
Fourier Representation



N	f(x)	ratio	df/dx	ratio	d^2f/dx^2	ratio
8	3.3e-03		1.3e-01		3.3e-00	
16	1.1e-05	3.0e+2	1.3e-03	$9.9e{+1}$	1.0e-01	$3.2e{+1}$
32	5.1e-10	$2.2e{+}4$	1.5e-07	$8.6e{+}3$	3.1e-05	$3.3e{+}3$
64	2.8e-13	$1.8e{+}3$	1.5e-10	$9.7e{+}2$	6.0e-08	$5.3e{+}2$
128	8.8e-15	$3.2e{+1}$	8.4e-12	$1.9e{+1}$	4.6e-09	$1.3e{+1}$

Generalizes to any number of dimensions!

N	f(x,y)	ratio	$\partial f/\partial x$	ratio	$\partial^2 f/\partial x^2$	ratio
8^{2}	2.9e-02		8.2e-01		$1.4e{+1}$	
16^{2}	3.5e-03	$8.4e{+1}$	2.7e-01	$3.0e{+}0$	$1.4e{+1}$	1.0e+0
32^{2}	1.2e-07	$2.8e{+4}$	3.0e-05	$9.0e{+}3$	4.8e-03	$2.9e{+}3$
64^2	2.8e-12	$4.4e{+}4$	1.4e-09	$2.1e{+4}$	4.2e-07	1.1e+4



Also useful for coarse inner discretizations. Does not require domain to be a square!!!!

Fast convergence of Fourier Series of discontinuous functions (Elimination or amelioration of the Gibbs phenomenon)

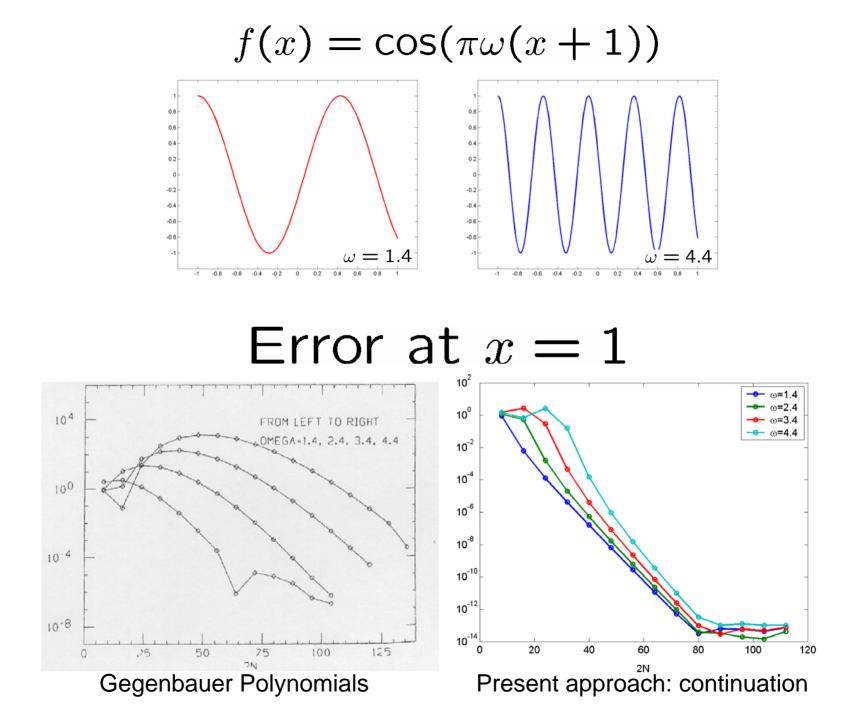
• *Majda, McDonough, Osher, 1978 (Filtering of high-order Fourier coefficients)*

• Mock and Lax, 1978 (Integration rule based on "Chebyshevlike" quadrature points)

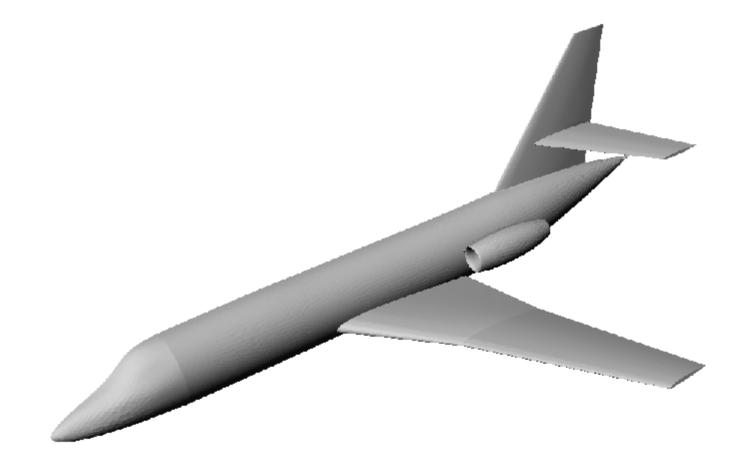
- Gottlieb and Tadmor, 1985 (Smoothing)
- Gottlieb and Shu, 1992 (Gegenbauer Polynomials)

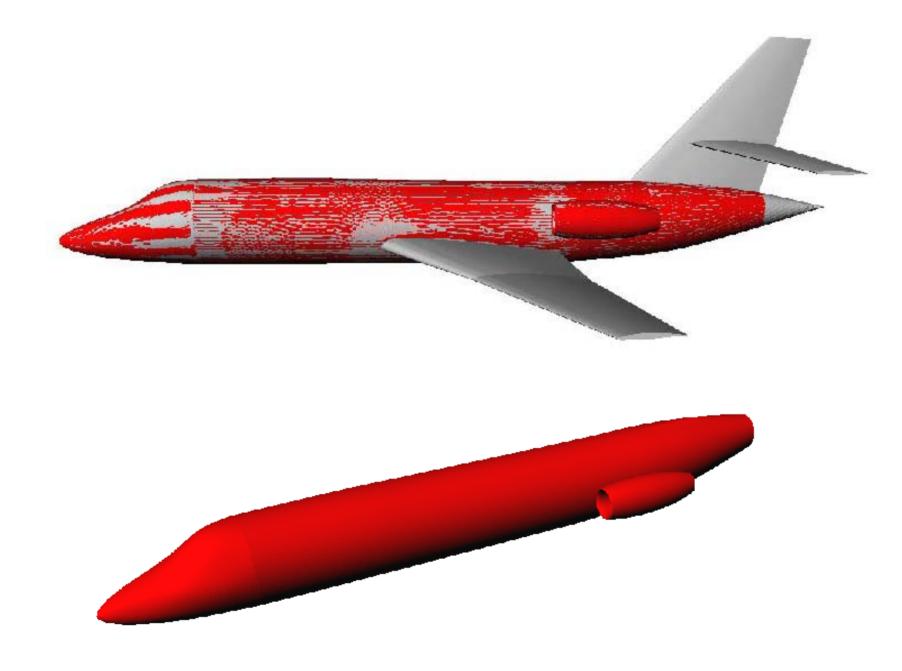
• Geer and Banerjee, 1994 (Built in singularities, requires knowledge of jumps in function and derivatives)

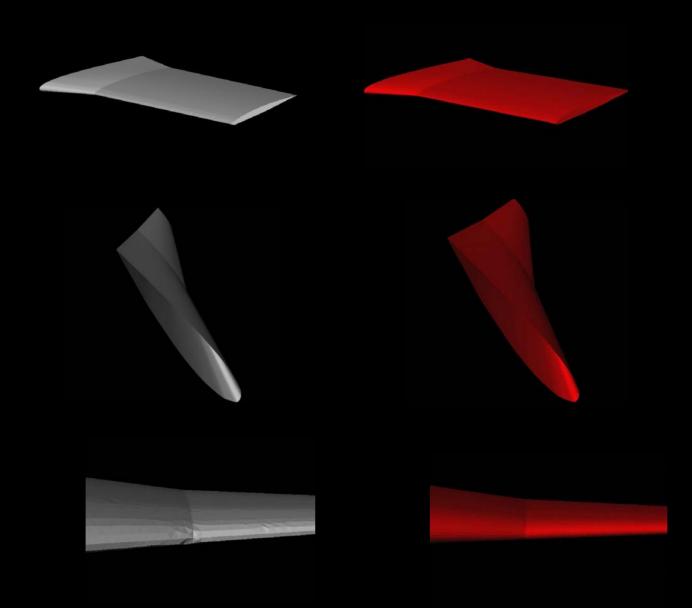
- Geer, 1995; Fornberg 2000 (Pade approximants)
- Gelb and Tanner, 2004 (New re-projection basis)

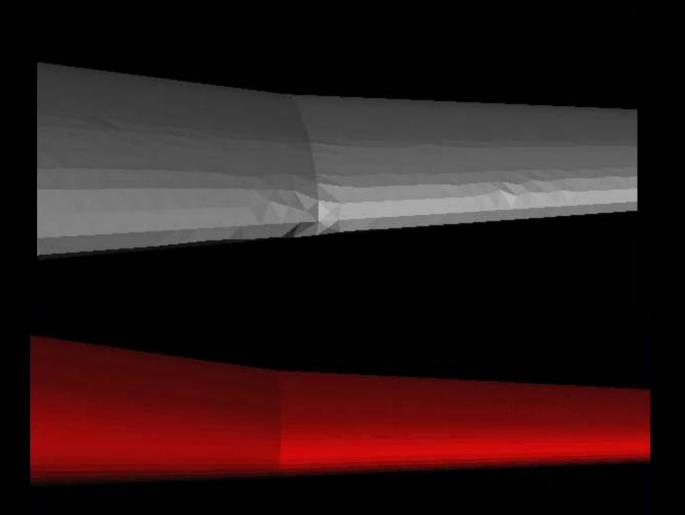


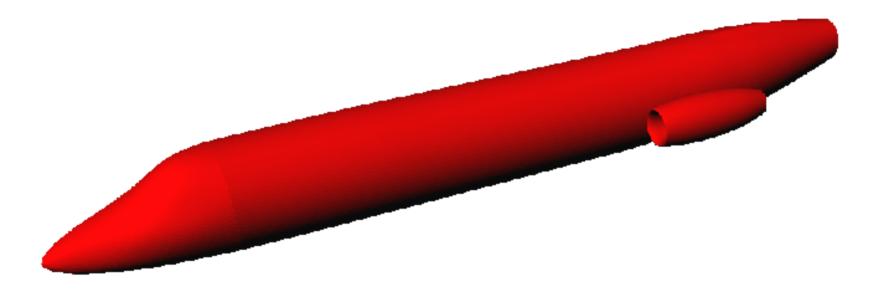
Falcon

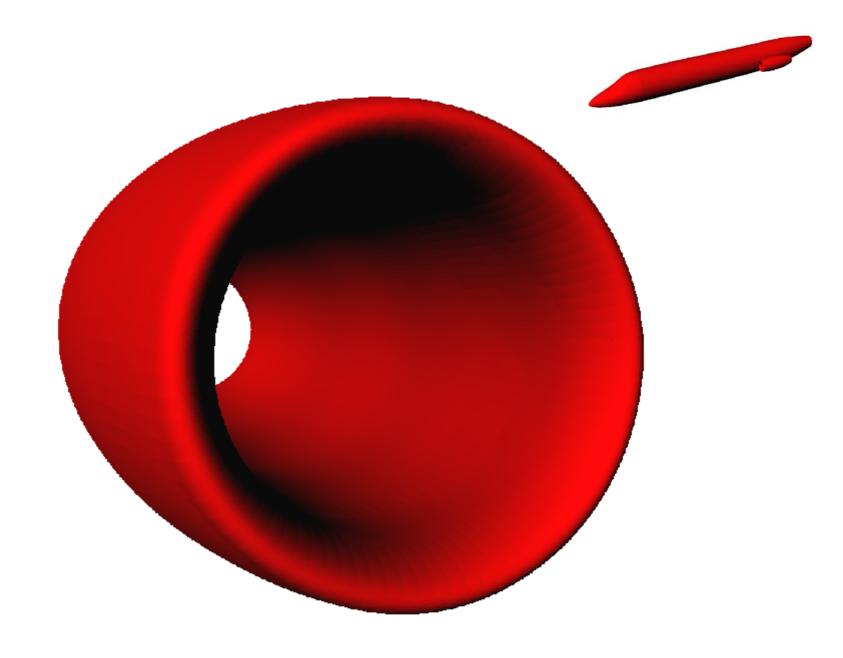


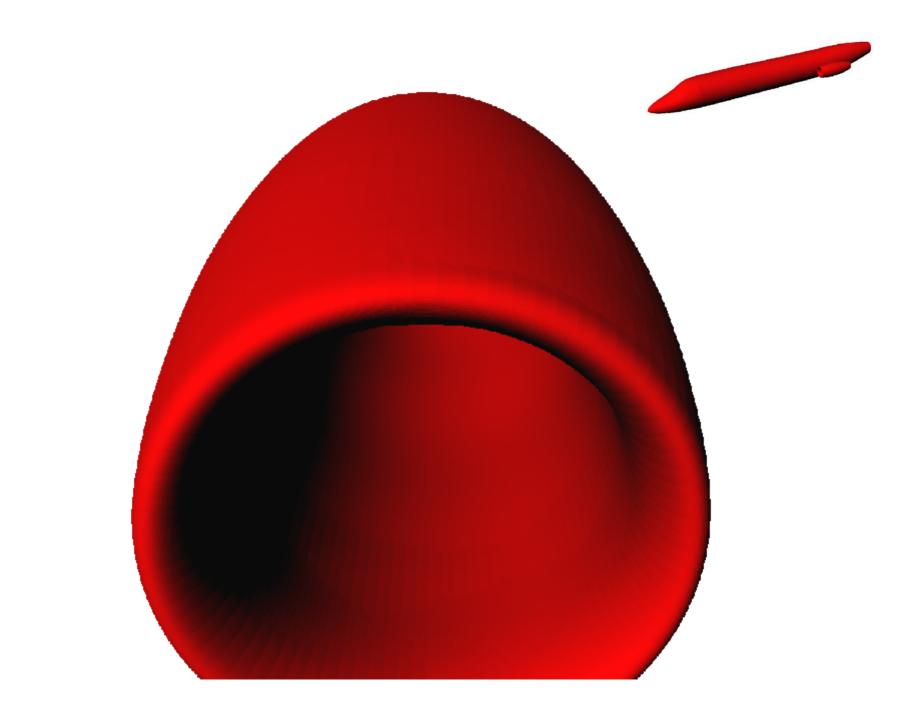






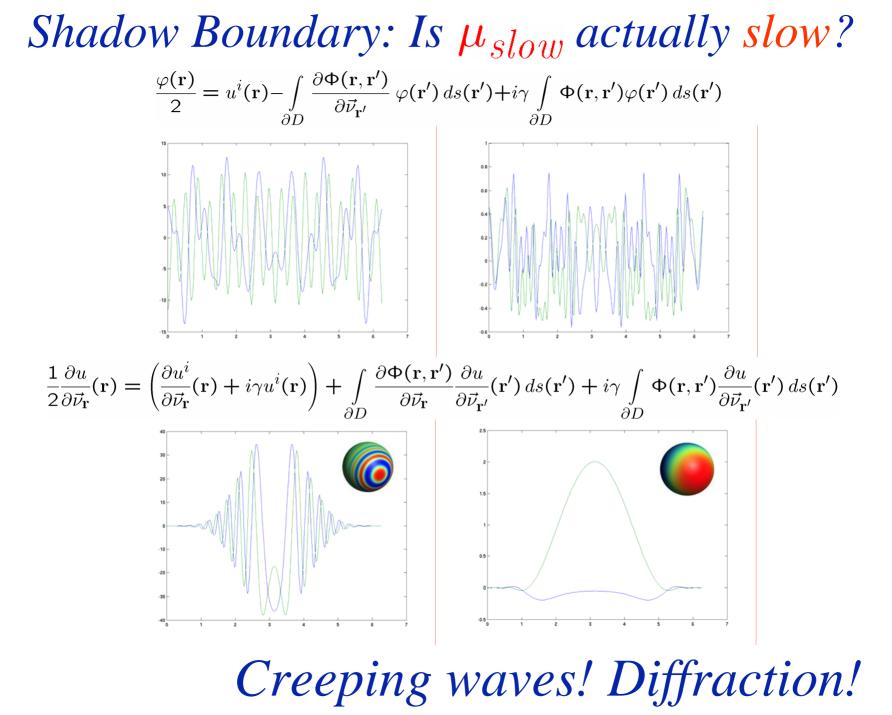


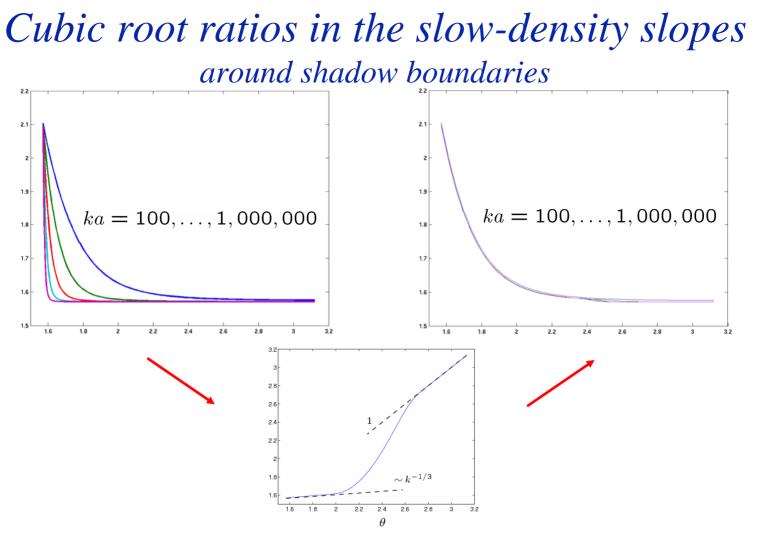




Issues

- Kernel Singularities
- Surface Representation
- Shadow Boundaries
- Creeping-Waves, Diffraction
- Multiple Scattering
- Three-dimensionality
- Corners, Edges

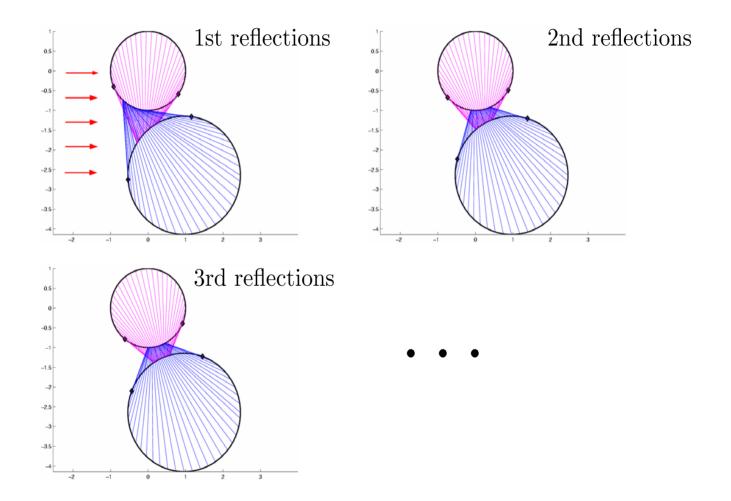




of Fourier modes needed to represent μ_{slow} with a fixed accuracy

k	w/out chg. of vars.	w/ chg. of vars.
100	110	110
1000	230	220
10000	310	280
100000	350	280
1000000	> 500	280

Multiple Scattering Automatic Multiple reflections Ansatz Generation!!!



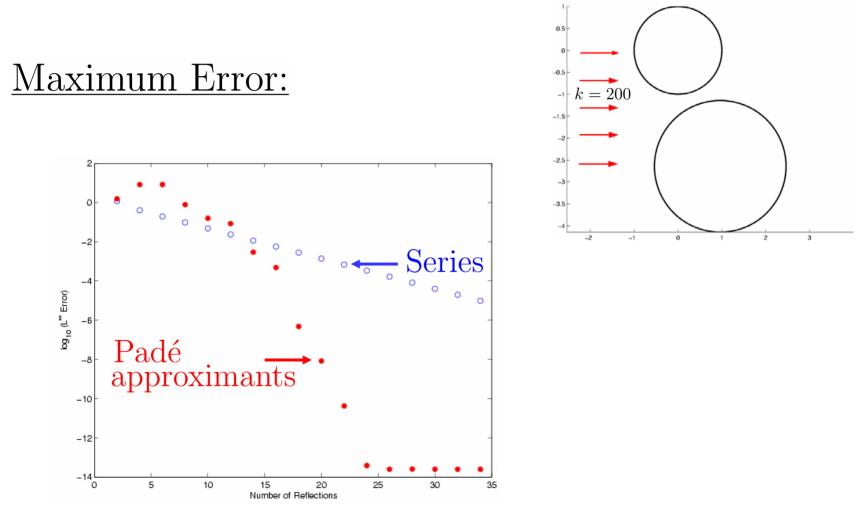
Bruno & Reitich [2003]

High-Frequency Integral Equation Method Implementation: Multiple reflections

$$\begin{bmatrix} I - T_{11} & -R_{12} \\ -R_{21} & I - T_{22} \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \begin{bmatrix} e^{ik\phi^0(t)} \\ e^{ik\nu^0(\tau)} \end{bmatrix} \implies$$

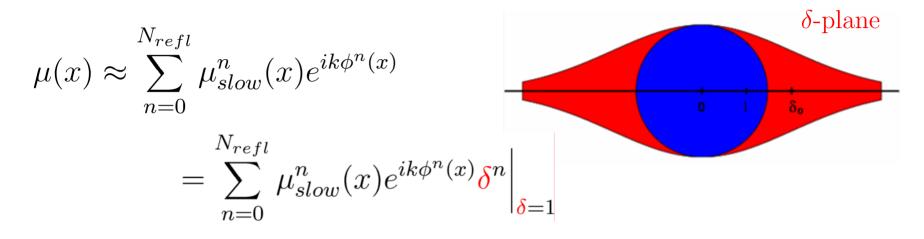
$$\begin{bmatrix} I & (I - T_{11})^{-1}(-R_{12}) \\ (I - T_{22})^{-1}(-R_{21}) & I \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \begin{bmatrix} (I - T_{11})^{-1}e^{ik\phi^0(t)} \\ (I - T_{22})^{-1}e^{ik\nu^0(\tau)} \end{bmatrix}$$
$$\xrightarrow{I - A} \begin{bmatrix} \mu_1^0 \\ \mu_2^0 \\ l_{2,slow} e^{ik\phi^0} \\ \mu_2^0 \\ l_{2,slow} e^{ik\phi^0} \end{bmatrix} + A \begin{bmatrix} \mu_1^0 \\ \mu_2^0 \\ l_{2,slow} e^{ik\nu^0} \end{bmatrix} + A^2 \begin{bmatrix} \mu_1^0 \\ \mu_2^0 \\ l_{2,slow} e^{ik\nu^0} \\ \mu_2^0 \\ l_{2,slow} e^{ik\nu^0} \end{bmatrix} + \cdots$$
$$\xrightarrow{Isolated} \xrightarrow{First}_{Reflections} \xrightarrow{Second} \cdots$$

Enhanced Convergence Acceleration by analytic continuation



Bruno & Reitich [2004]

A Convergent High-Frequency Approach Acceleration by analytic continuation

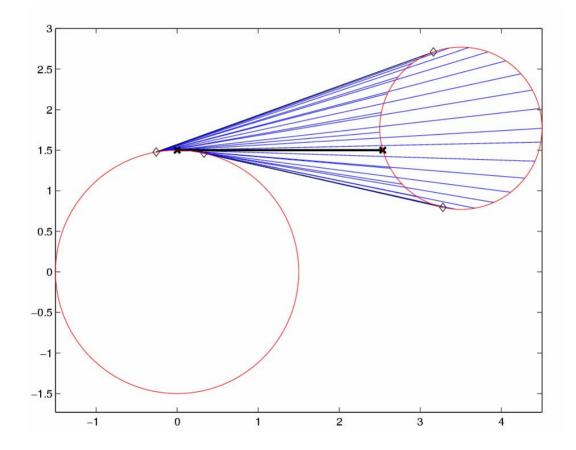


Analytic continuation - Sum series outside radius of convergence - Accelerate convergence inside

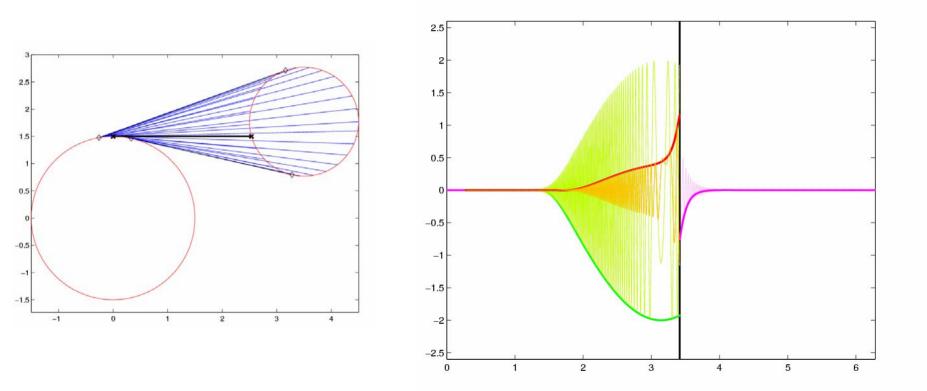
e.g. Pade approximation

$$\mu(x) \approx \frac{a_0(x) + a_1(x)\delta + \dots + a_m(x)\delta^m}{1 + b_1(x)\delta + \dots + b_m(x)\delta^m}\Big|_{\delta=1}, \ m = 1, 2, \dots, N_{refl}/2$$

Multiple scattering + diffraction!



Diffraction ansatz

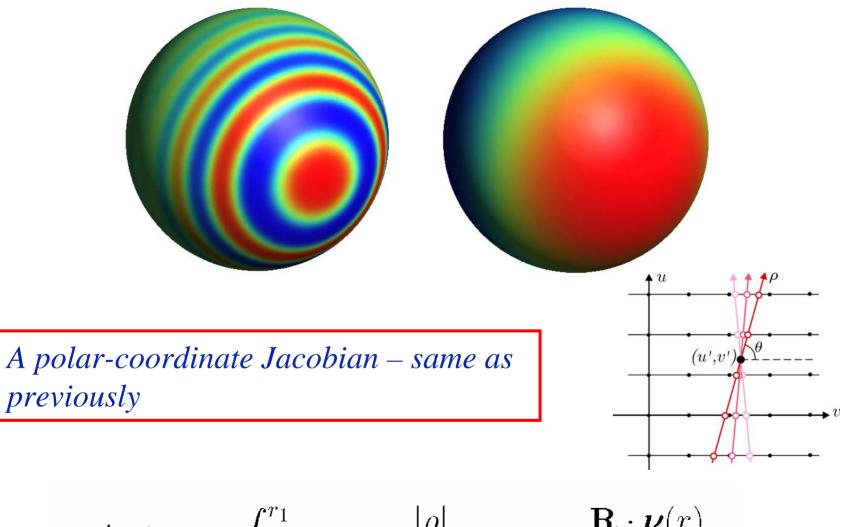


Bruno and Reitich, [2004]

Issues

- Kernel Singularities
- Surface Representation
- Shadow Boundaries
- Creeping-Waves, Diffraction
- Multiple Scattering
- Three-dimensionality
- Corners, Edges

Three Dimensional Problem (Preliminary!)



$$L(u',v',\theta) = \int_{-r_1}^{r_1} f_k^*(\rho,\theta) \frac{|\rho|}{|\mathbf{R}|} \cos k |\mathbf{R}| \frac{\mathbf{R} \cdot \boldsymbol{\nu}(r)}{\mathbf{R}^2} d\rho$$

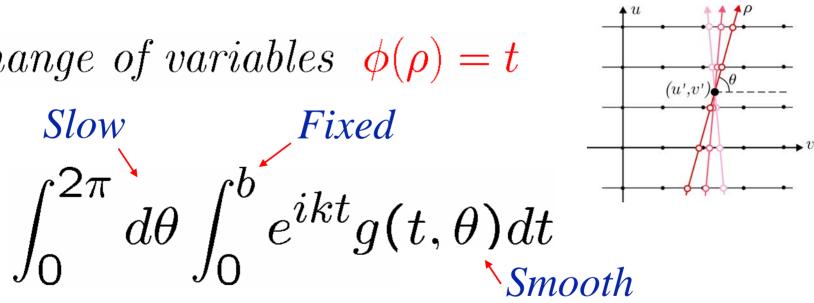
Use "Canonical Integrals": Re-express in the form

 $\int_{0}^{2\pi} d\theta \int_{0}^{\varepsilon} e^{ik\phi(\rho)} f(\rho,\theta) d\rho$

Fixed

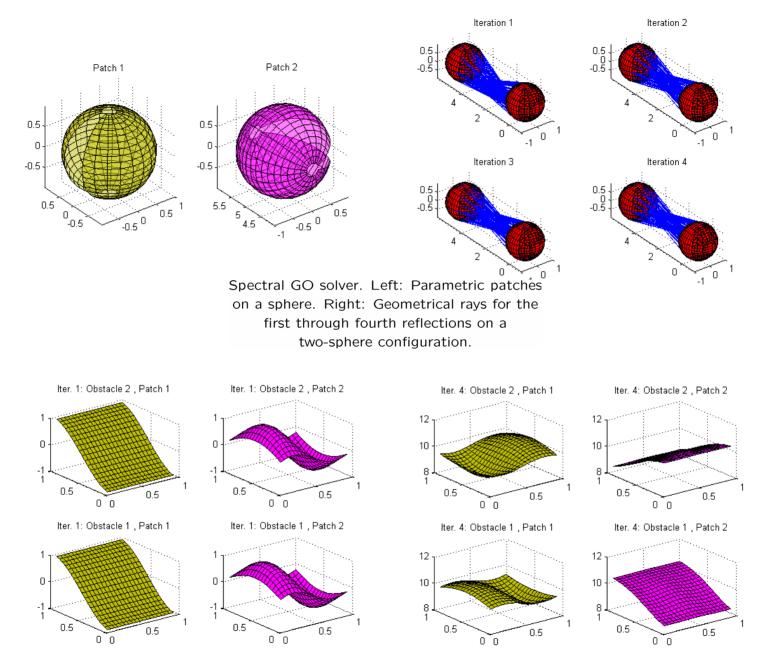
Change of variables $\phi(\rho) = t$

Slow



(indep. of k)Critical points near shadow boundaries!

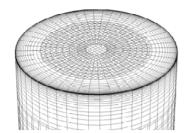
Bruno and Geuzaine, [2005]



Spectral GO solver: Calculated phases on each patch for first and fourth reflections.

Issues

- Kernel Singularities
- Surface Representation
- Shadow Boundaries
- Creeping-Waves, Diffraction
- Multiple Scattering
- Three-dimensionality
- Corners, Edges



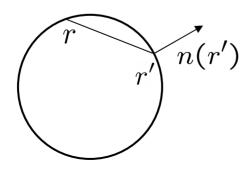
Singular surfaces

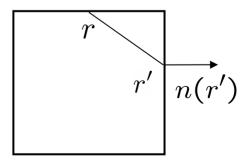
Example: Double layer potential (soft acoustic scattering)

$$\int_{\partial\Omega} f(r') \frac{\partial}{\partial n(r')} \Phi_k(r,r') ds(r')$$

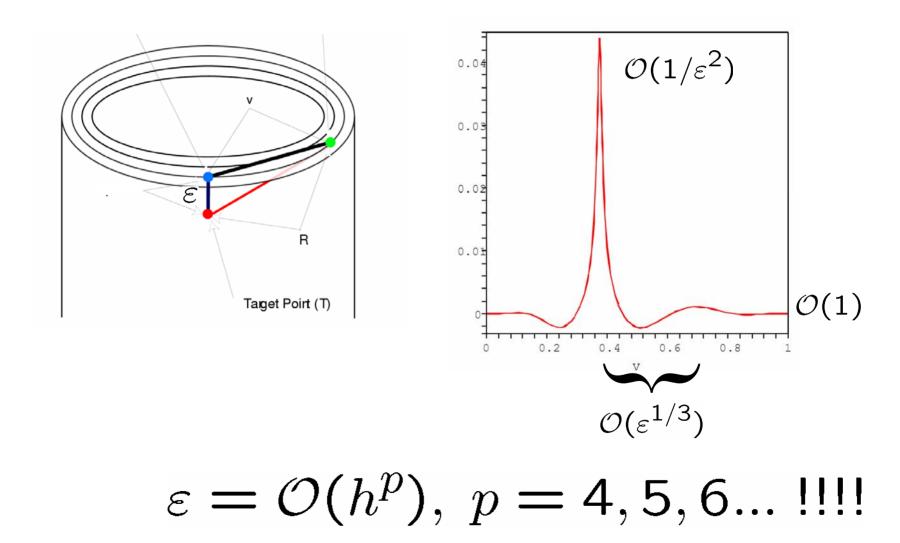
$$\frac{\partial}{\partial n(r')} \Phi_k(r,r') = \mathcal{O}\left(\frac{(r-r') \cdot n(r')}{|r-r'|^3}\right) = \mathcal{O}\left(\frac{1}{|r-r'|^2}\right)$$

Non-integrably singular

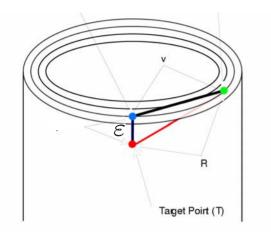




Integrable kernels are still nearly singular: 1-d-canonical integration



Solution: "1-d-canonical integration" of nearly-singular kernel



Integrand of interest:

 $g(v)/R^3$

Note that

1) g is a smooth function of v, and 2) $R = \sqrt{\varepsilon^2 + v^2}$.

Use v as variable of integration!

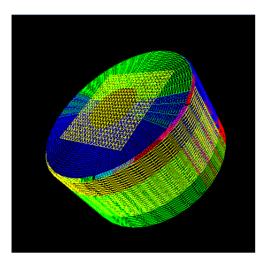
It suffices to integrate

$$v^p/(v^2+\varepsilon^2)^{3/2}$$

This integral is

- 1) "Canonical" (closed form), and
- 2) Independent of the integration surface!

OB and R. Paffenroth [2004]



Cylinder of radius 1 and height 1k=2

(Normalized Max. Error = max. of field-error on a sphere of radius 2 divided by max of field)

Point source slightly off-center

Discretization	Iterations	Normalized Max. Error		
$10 \times 9 \times 9$	13	$2.2 \cdot 10^{-2}$		
10 imes 17 imes 17	11	$3.3 \cdot 10^{-4}$		
$10 \times 33 \times 33$	11	$1.0\cdot 10^{-5}$		
$10 \times 65 \times 65$	11	$1.1\cdot 10^{-6}$		

Plane wave incidence

Discretization	Iterations	Normalized Max. Error
$10 \times 9 \times 9$	15	$1.5 \cdot 10^{-2}$
$10 \times 17 \times 17$	13	$3.1 \cdot 10^{-4}$
$10 \times 33 \times 33$	13	$9.5\cdot 10^{-6}$
$10 \times 65 \times 65$		

a) Point source, k=10

~2
1 0 1
-1 -0.5 0 0.5 1 1.5 2 -2

b) Plane wave incidence, k=10

Normalized Max. Error

 $1.7 \cdot 10^{-4}$

 $2.0 \cdot 10^{-3}$

Cylinder of radius 1 and height 1

k = 10, 20

 \overline{k}

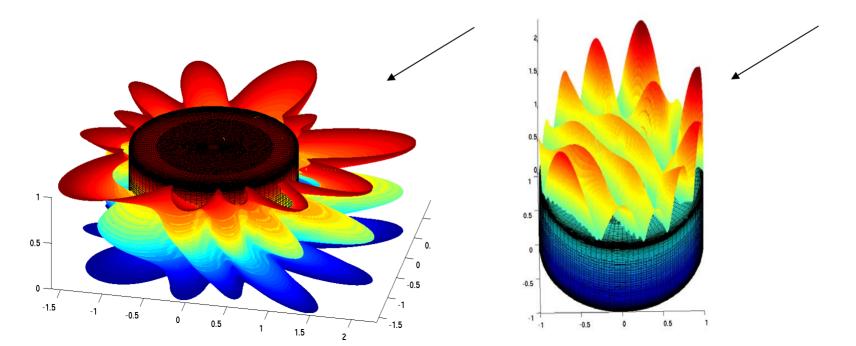
10

20

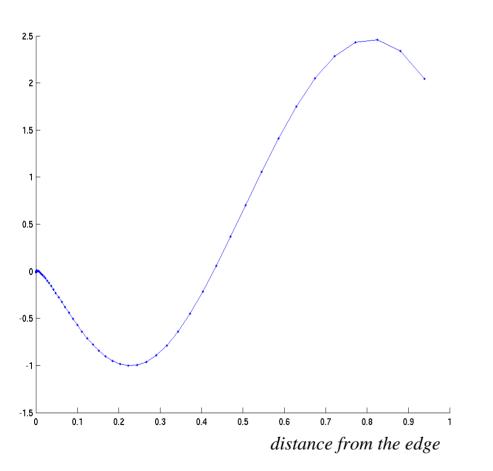
Discretization

 $10 \times 65 \times 65$

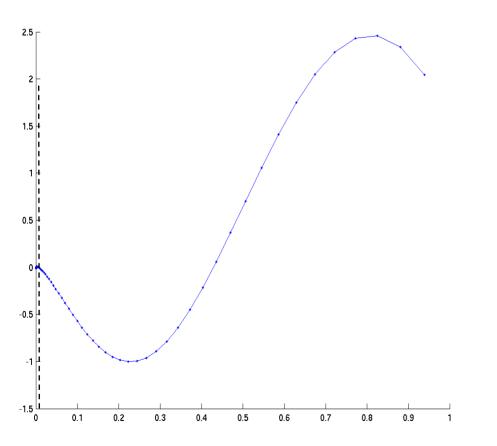
 $10 \times 65 \times 65$



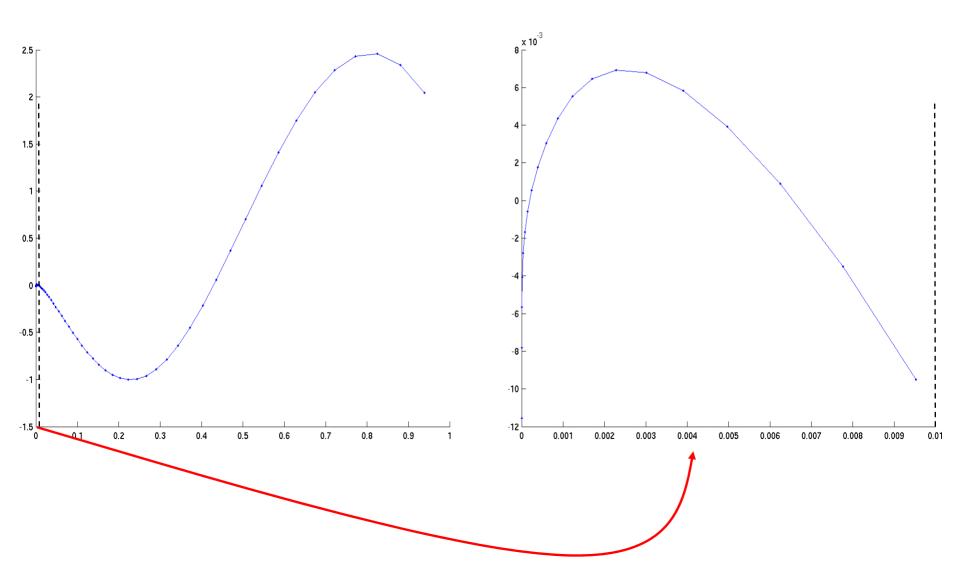
Current along a radius



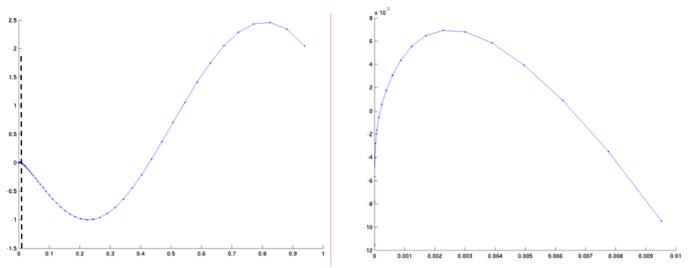
Current along a radius – focus near the edge



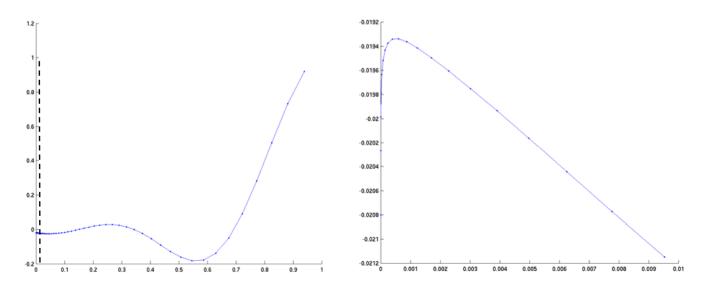
Current along a radius – focus near the edge



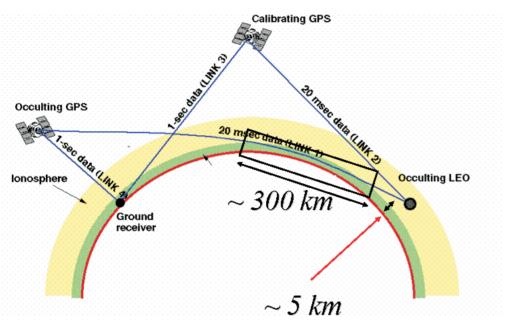
Plane-wave incidence

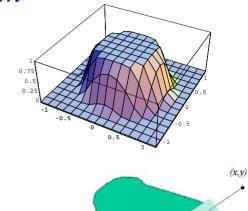


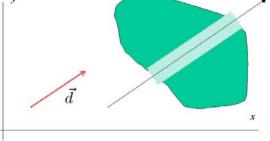
Point-source incidence (exact solution known)



Occultation Retrievals: a high-frequency <u>penetrable</u> scattering problem







N_{λ}	ϵ	Relative Error	$N_{\lambda}\epsilon^2$	T(secs)	HF integrator (secs)
100	0.5	$O(10^{-4})$	25	.11	.02
400	0.25	$O(10^{-4})$	25	2.08	.08
1600	0.125	$O(10^{-4})$	25	29.01	.31
6400	0.0625	$O(10^{-4})$	25	450.39	14.45
200000	0.011	$O(10^{-4})$	25	pprox 5 days	37.73

Computational cost of evaluation of the High-Frequency integral

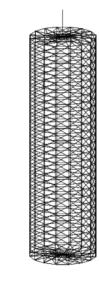
OB and J. Chaubell, in progress

Antenna (wire) problem

Far Field

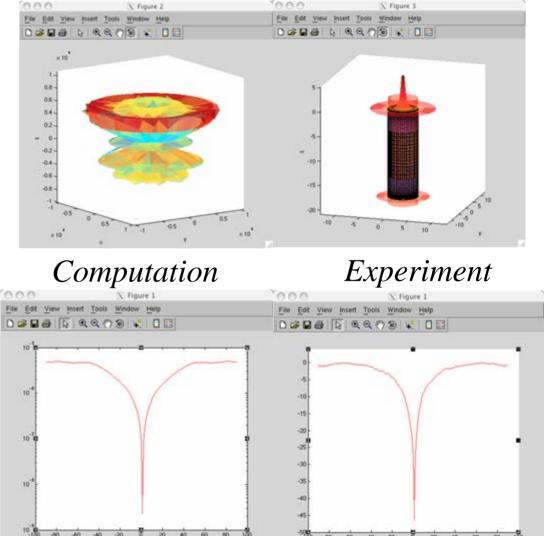
Surface and

wire currents



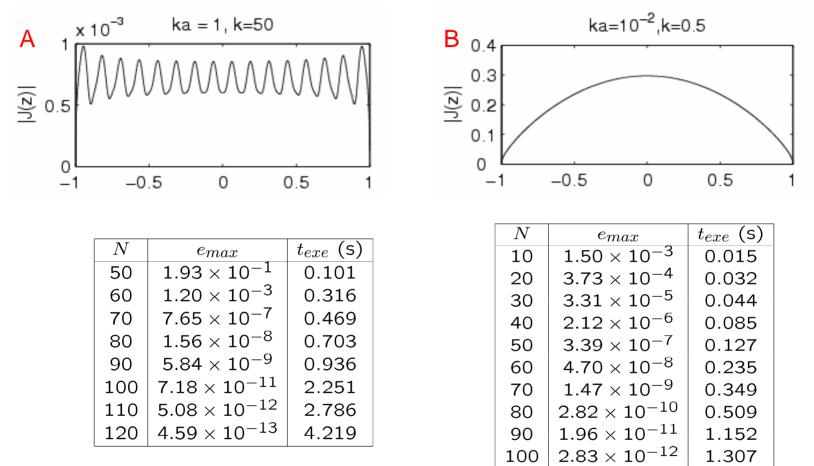
Sphere and wire, k = 0.5, dist = 5.0e-310 1

Experiments by Cable and Blezyunk, JPL, 2005



000

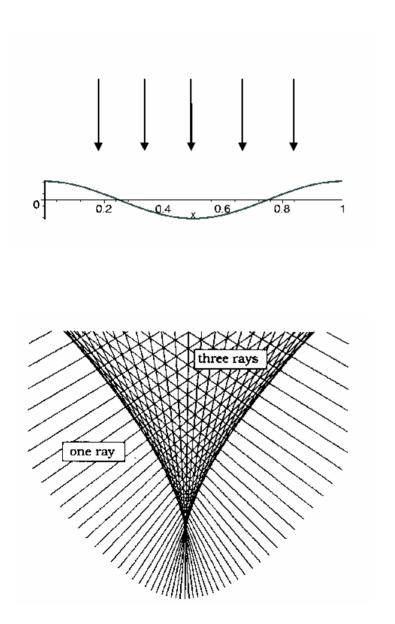
Wire problem Method: Canonical integration

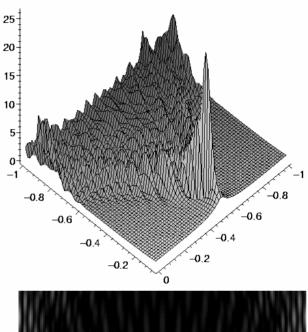


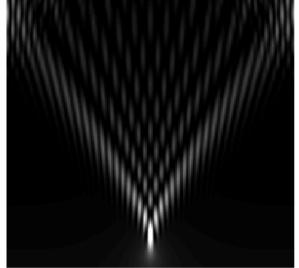
Previous state of the art: Davies et. al. (2001) J Comput Phys **168**: 155-183. Require $\underline{N = 700}$ for $O(10^{-5})$ maximum relative errors.

OB and M. Haslam [2005]

High Frequency and Caustics

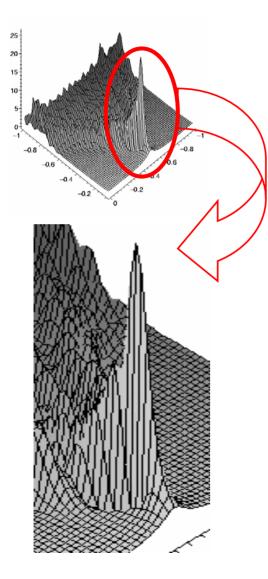


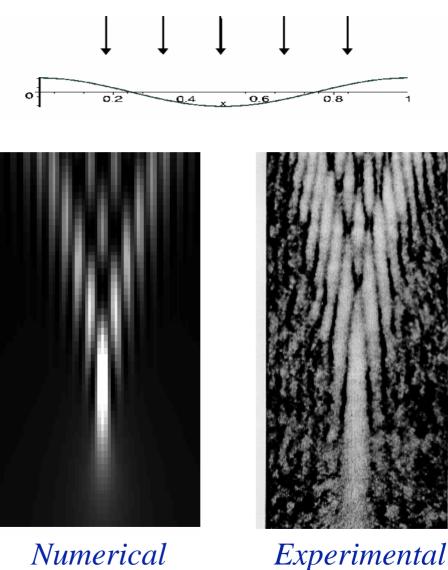




Bruno, Sei and Caponi

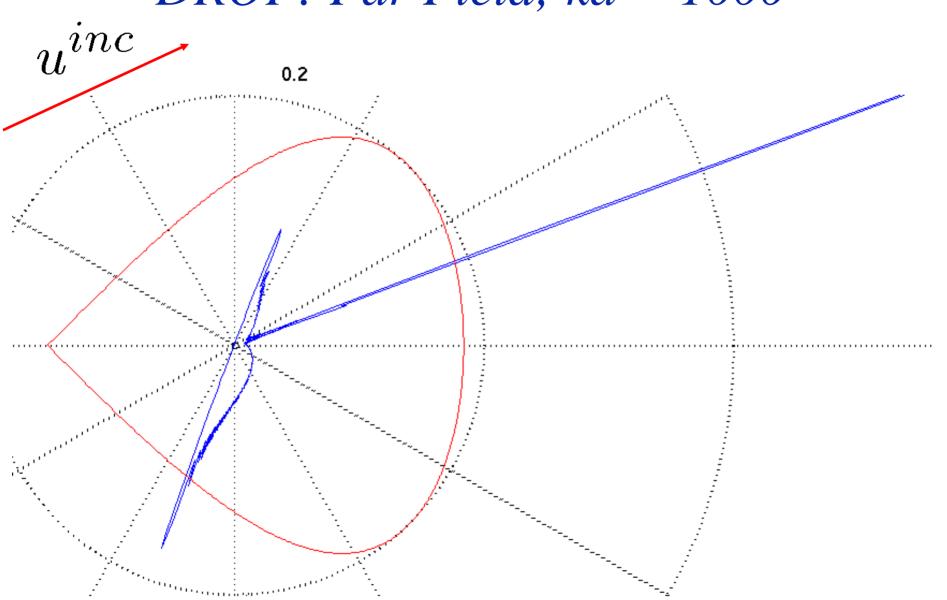
Application: High Frequency and Caustics





Bruno, Sei and Caponi

DROP: Far Field; ka = 1000



Example: Combined Field IE

25 unknowns					
ka	GMRES iterations	Error	CPU time		
1	9	1.0e - 12	< 1s		
10	11	$1.6e{-4}$	< 1s		
100	13	9.3 <i>e</i> -4	3 <i>s</i>		
1000	13	8.3 <i>e</i> -3	5 <i>s</i>		
10000	15	1.0e-2	6 <i>s</i>		
100000	14	1.1e-2	6 <i>s</i>		

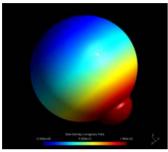
100 unknowns					
ka	GMRES iterations	Error	CPU time		
1	9	$1.0e{-12}$	< 1s		
10	17	$3.0e{-11}$	5s		
100	22	$1.5e{-5}$	11s		
1000	25	$3.1e{-5}$	2m30s		
10000	27	8.4e - 5	3m12s		
100000	30	8.8e - 5	3 <i>m</i> 43 <i>s</i>		

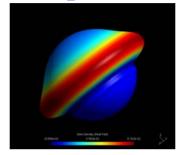
Convergence (Combined Field IE)

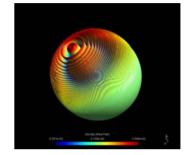
ka = 150

Unknowns	GMRES Iterations	Max. Error
25	13	4.4e-3
50	23	1.2e-3
100	31	1.2e-4
200	34	4.4e-6
400	39	1.0e-9
800	45/56	1.0e-12/1.3e-13

Preliminary numerical results Single processor runs (1.7GHz pentium IV) No code optimizations







 $32 \times 32 \times 2$ unknowns

k	Diameter	GMRES iterations	Max. Error	CPU time
800	127λ	32	2.18e-2	164 min
1600	255λ	33	3.10e-2	169 min
3200	510λ	41	5.01e-2	212 min
Preprocessing time (critical points computation): 22 min				

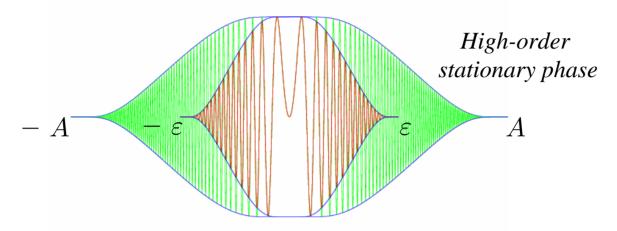
$$\operatorname{Error} = \frac{\max_{r} |\mu_{slow}(r) - \mu_{slow}^{exact}(r)|}{\max_{r} |\mu_{slow}^{exact}(r)|}$$

Surface current error. Far field error should be one-to-two digits smaller.

OB and C. Geuzaine [2005] (preliminary)

Recap

1) Convergent <u>O(1)</u> High-Frequency Integral Method



2) Basic integration methods, surface representation and other issues addressed by means of novel Fourier-based approaches

