# The Phase Flow Method 

Emmanuel Candès, California Institute of Technology

Workshop on High Frequency Waves CSCAMM, University of Maryland, September 2005

Collaborators: Lexing Ying (Caltech)

## Agenda

- The phase flow method
- Applications in computational high frequency wave propagation
- Wave front propagation
- Amplitude computations
- Multiple arrival times computations
- Numerical results
- Epilogue


## Problem Statement

- Nonlinear autonomous ODE

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=F(y), \quad t>0
$$

where $\boldsymbol{y}: \mathbf{R} \rightarrow \mathbf{R}^{d}$ and $\boldsymbol{F}: \mathbf{R}^{d} \rightarrow \mathbf{R}^{d}$ is smooth.

- Compute $\boldsymbol{y}(\boldsymbol{T})=y\left(T, y_{0}\right)$ for many initial conditions $\boldsymbol{y}_{0}$.
- Standard approach: time step $\tau$ and local integration rule for each $\boldsymbol{y}_{0}$.
- Not very efficient.


## Terminology

- Phase map: $g_{t}: \mathbf{R}^{d} \rightarrow \mathbf{R}^{d}$ defined by $g_{t}\left(y_{0}\right)=y\left(t, y_{0}\right)$.
- Phase flow: collection of all phase maps $\left\{g_{t}, t \in \mathrm{R}\right\}$.
- A manifold $M \subset \mathbf{R}^{d}$ is invariant if $g_{t}(M) \subset M$.


## Example: Bicharacteristic Flow

Ray equations in phase space $\mathrm{R}^{d} \times \mathrm{R}^{d}, \boldsymbol{d}=2,3$

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\nabla_{p} H(x, p), \quad \frac{\mathrm{d} p}{\mathrm{~d} t}=-\nabla_{x} H(x, p)
$$

with Hamiltonian $\boldsymbol{H}(\boldsymbol{x}, \boldsymbol{p})$

$$
H(x, p)=c(x)|p|
$$

- Autonomous
- Wish to integrate for each $y_{0}=\left(x_{0}, p_{0}\right) \in \Sigma_{0}$ (initial wave front)
- Invariant manifold $M$ :
$-\mathbf{R}^{d} \times \mathbf{R}^{d}$
$-\mathrm{R}^{d} \times S^{d-1}$
$-[0,1]^{3} \times S^{d-1}$


## Key Structure

Rapid construction of the complete phase map $g_{T}$ at time $T$.

1. Discretization. Start with a uniform or quasi-uniform grid $M_{h}$ on $M$.
2. Initialization. Fix a small time step $\tau$ and compute an approximation of $g_{\tau}$.

- For each $y_{0} \in M_{h}, g_{\tau}\left(y_{0}\right)$ is computed by a standard ODE integration rule
- The value of $g_{\tau}$ at any other point is defined via local interpolation.

3. Loop. Construct $g_{2^{k} \tau}$ from $g_{2^{k-1} \tau}$

- For each $y_{0} \in M_{h}, g_{\tau}\left(y_{0}\right)$

$$
g_{2^{k} \tau}\left(y_{0}\right)=g_{2^{k-1} \tau}\left(g_{2^{k-1} \tau}\left(y_{0}\right)\right)
$$

- Otherwise, local interpolation.

Key point: Systematic use of already computed information

## Peek at the results

- Very efficient
- Surprisingly accurate


## Algorithm 1 (Basic Version)

- Parameter selection. Select a grid size $h>0$, a time step $\tau>0$, and an integer constant $S \geq 1$ such that $B=(T / \tau)^{1 / S}$ is an integer power of 2 .
- Discretization. Select a uniform or quasi-uniform grid $\boldsymbol{M}_{\boldsymbol{h}} \subset \boldsymbol{M}$ of size $\boldsymbol{h}$.
- Burn-in. Compute $\tilde{\boldsymbol{g}}_{\boldsymbol{\tau}}$.
- For a gridpoint $\boldsymbol{y}_{0}, \tilde{\boldsymbol{g}}_{\tau}\left(\boldsymbol{y}_{0}\right)$ is calculated by applying the ODE integrator.
- Construct an interpolant and compute $\tilde{\boldsymbol{g}}_{\tau}\left(\boldsymbol{y}_{0}\right)$ by evaluating the interpolant outside of the grid.
- Loop. For $k=1, \ldots, S$, evaluate $\tilde{\boldsymbol{g}}_{B^{k} \tau}$.
- $\tilde{g}_{B^{k} \tau}\left(y_{0}\right)=\left(\tilde{g}_{B^{k-1} \tau}\right)^{(B)}\left(y_{0}\right)$ for each $y_{0}$ on the grid.
- Construct an interpolant which and use it for out-of-grid evaluation.
- Terminate. When $k=S$, we hold $\tilde{g}_{t}$, for $t=\tau, 2 \tau, 4 \tau, 8 \tau, \ldots, T$ and more.


## Main Result

- ODE integrator is of order $\boldsymbol{\alpha}$.
- Local interpolation scheme is of order $\beta \geq \mathbf{2}$.
- Size of grid is $O\left(h^{-d_{M}}\right)$

Approximation error at time $t$

$$
\varepsilon_{t}=\max _{b \in M}\left|g_{t}(b)-\tilde{g}_{t}(b)\right| .
$$

(i) The approximation error obeys

$$
\varepsilon_{T} \leq C \cdot\left(\tau^{\alpha}+h^{\beta}\right)
$$

(ii) The complexity is $O\left(\tau^{-1 / S} \cdot h^{-d_{M}}\right)$.
(iii) For each $\boldsymbol{y} \in M, \tilde{g}_{T}(\boldsymbol{y})$ can be computed in $O(1)$ operations.
(iv) For any intermediate time $\boldsymbol{t}=\boldsymbol{m} \boldsymbol{\tau} \leq \boldsymbol{T}$ and $\boldsymbol{y} \in \boldsymbol{M}, \tilde{\boldsymbol{g}}_{t}(\boldsymbol{y})$ is evaluated in $O(\log (1 / \tau))$ operations.

## Asymptopia

Balancing of errors $h^{\beta} \sim \tau^{\alpha}$

- Accuracy $O\left(\tau^{\alpha}\right)$
- Complexity $O\left(\tau^{-r}\right), r=d_{M} \alpha / \beta+1 / S$.

Suppose that $M$ and $F$ are sufficiently smooth, and choose $\beta$ and $S$ s.t. $r<1$.

In an asymptotic sense, one can compute an approximation to the entire phase map $g_{T}$ much faster than one computes-with the same order of accuracy-a single solution with the standard ODE integration rule.

## Variation I: Time-doubling

Select $B=2$, and construct $g_{2^{k} \tau}$ from $g_{2^{k-1} \tau}$ via

$$
g_{2^{k} \tau}\left(y_{0}\right)=g_{2^{k-1} \tau}\left(g_{2^{k-1} \tau}\left(y_{0}\right)\right)
$$

- Complexity is lower $O\left(h^{-d_{M}} \log (1 / \tau)\right)$
- Accuracy is reduced $O\left(\left(\tau^{\alpha}+h^{\beta}\right) / \tau\right)$


## Variation II: Algorithm 2 (Practical Version)

For large times, $\boldsymbol{g}_{\boldsymbol{T}}$ may become quite oscillatory, and one would need a very fine initial spatial resolution.
(a) Choose $T_{0}=O(1), T=m T_{0}$, such that $g_{T_{0}}$ remains non-oscillatory and pick $h$ so that the grid is sufficiently dense to approximate $\boldsymbol{g}_{T_{0}}$ accurately.
(b) Construct $\tilde{g}_{T_{0}}$ using Algorithm 1 .
(c) For any $y_{0}$, define $\tilde{\boldsymbol{g}}_{T}\left(y_{0}\right)$ by $\tilde{\boldsymbol{g}}_{T}\left(y_{0}\right)=\left(\tilde{\boldsymbol{g}}_{T_{0}}\right)^{(m)}\left(y_{0}\right)$.

## Problem specific components

- Discretization of $M$
- ODE integration rule
- Local interpolation scheme


## Geometrical Optics

- Inhomogeneous scalar wave equation in 2D and 3D:

$$
u_{t t}-c^{2}(x) \Delta u=0, \quad t>0
$$

- High-frequency expansion (WKB)

$$
u(t, x)=e^{i \lambda \Phi(t, x)} \sum_{n \geq 0} A_{n}(t, x)(i \lambda)^{-n}
$$

where $\boldsymbol{\Phi}$ and $\boldsymbol{A}_{\boldsymbol{n}}$ are smooth.

- Eikonal equations

$$
\Phi_{t} \pm c(x)|\nabla \Phi|=0
$$

- Bicharacteristics equations:

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=c(x) \frac{p}{|p|}, \quad \frac{\mathrm{d} p}{\mathrm{~d} t}=-\nabla c(x)|p|
$$

- Reduced Hamiltonian flow, $p=|p| \nu$

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=c(x) \nu, \quad \frac{\mathrm{d} \nu}{\mathrm{~d} t}=-\nabla c(x)+(\nabla c(x) \cdot \nu) \nu
$$

or compactly $\mathrm{d} \boldsymbol{y} / \mathrm{d} t=\boldsymbol{F}(\boldsymbol{y})$.

- Assume $c(x)$ is periodic on $[0,1]^{d}$ (can be relaxed).
- $M=\left\{(x, \nu) \in[0,1]^{d} \times S^{d-1}\right\}$ compact and smooth.


## The Phase Flow Method for HFWP (2D)

- $M=[0,1]^{2} \times[0,2 \pi]$

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=c(x, y) \cos \theta, \quad \frac{\mathrm{d} y}{\mathrm{~d} t}=c(x, y) \sin \theta, \quad \frac{\mathrm{d} \theta}{\mathrm{~d} t}=c_{x} \sin \theta-c_{y} \cos \theta
$$

- ODE integrator: 4th order Runge-Kutta
- Cartesian uniform grid on $M=[0,1]^{2} \times[0,2 \pi]$
- Local interpolation:
- Interpolate the periodic shift $g_{t}(\boldsymbol{y})-\boldsymbol{y}$ instead of $\boldsymbol{g}_{\boldsymbol{t}}(\boldsymbol{y})$.
- Interpolation of a periodic function on a Cartesian grid.
- Solution: tensor-product Cardinal B-spline (interpolant is constructed by means of FFT's).


## Wave Front Construction



Initial wave front $y_{0}(r)=\left(x_{0}(r), \nu_{0}(r)\right)$ propogated up to time $T$. Basic algorithm:

- Choose $T_{0}$ and construct $\tilde{g}_{T_{0}}$.
- Discretize the wave front by sampling $y_{0}(r)$ at the points $r_{i}$.
- For each $r_{i}$, approximate $\boldsymbol{y}\left(T, r_{i}\right)$ with $\tilde{\boldsymbol{y}}\left(T, r_{i}\right)=\left(\tilde{g}_{T_{0}}\right)^{(m)}\left(y_{0}\left(r_{i}\right)\right)$ where $T=m T_{0}$.
- Connect $\tilde{x}\left(T, r_{i}\right)$ to construct the final wave front.


## 2D Adaptive Wave Front Construction

Choose a tolerance $\lambda$, and sample the initial wave front with $R=\left\{r_{i}\right\}$ s.t.

$$
\left|y_{0}\left(r_{i}\right)-y_{0}\left(r_{i+1}\right)\right| \leq \lambda
$$

For $k=1, \cdots, T / T_{0}$

- For any $r_{i} \in R, \tilde{y}\left(k T_{0}, r_{i}\right)=\tilde{g}_{T_{0}}\left(\tilde{y}\left((k-1) T_{0}, r_{i}\right)\right)$.
- For any interval $I_{i}:=\left[r_{i}, r_{i+1}\right]$ s.t. $\left|\tilde{y}\left(k T_{0}, r_{i}\right)-\tilde{y}\left(k T_{0}, r_{i+1}\right)\right|>\lambda$ :
- Insert $N_{i}$ new samples $\left\{r_{\ell}\right\}$ evenly distributed in $I_{i}$;

$$
N_{i}=\left\lceil\left|\tilde{y}\left(k T_{0}, r_{i}\right)-\tilde{y}\left(k T_{0}, r_{i+1}\right)\right| / \lambda\right\rceil .
$$

- The values $\tilde{\boldsymbol{y}}\left(k T_{0}, r_{\ell}\right)$ at the new points are computed using

$$
\tilde{y}\left(k T_{0}, r_{\ell}\right)=\left(\tilde{g}_{T_{0}}\right)^{(k)}\left(y_{0}\left(r_{\ell}\right)\right)
$$

## Inserting Rays

Standard Lagrange type methods insert new rays by interpolating nearby sampled values.

- Difficult (unstructured grid)
- Low accuracy

Effortless and accurate with the phase flow method.
Refinement condition.

- Standard methods need to use

$$
\left|\tilde{y}\left(k T_{0}, r_{i}\right)-\tilde{y}\left(k T_{0}, r_{j}\right)\right|>\lambda .
$$

- Here,

$$
\left|x\left(k T_{0}, r_{i}\right)-x\left(k T_{0}, r_{j}\right)\right|>\lambda
$$

is sufficient since interpolation is not used. Increased efficiency.

## Amplitude Computation, I

Squeezing and spreading of rays

$$
\begin{align*}
\frac{A_{0}(x(t, r))}{A_{0}(x(0, r))} & =\sqrt{\frac{\left|\partial_{r} x(0, r)\right|}{\left|\partial_{r} x(t, r)\right|} \cdot \frac{c(x(t, r))}{c(x(0, r))}}  \tag{2D}\\
\frac{A_{0}(x(t, r, s))}{A_{0}(x(0, r, s))} & =\sqrt{\frac{\left|\partial_{r} x(0, r, s) \times \partial_{s} x(0, r, s)\right|}{\left|\partial_{r} x(t, r, s) \times \partial_{s} x(t, r, s)\right|} \cdot \frac{c(x(t, r, s))}{c(x(0, r, s))}} \tag{3D}
\end{align*}
$$

- Additional information is needed: $\partial_{r} x(t, r)$ in 2D and $\partial_{r} x(t, r, s)$ and $\partial_{s} x(t, r, s)$ in 3D.
- It is sufficient to know $\nabla_{b} y(t, b)$.
- Approximate the gradient of the phase map along with the phase map.


## Amplitude Computation, II

- Linear equation for $\nabla_{b} y(t, b)$.

$$
\frac{\mathrm{d} \nabla_{b} y(t, b)}{\mathrm{d} t}=\nabla_{y} F(y(t, b)) \cdot \nabla_{b} y(t, b), \quad \nabla_{b} y(0, b)=I
$$

with

$$
\nabla_{y} F(y)=\left(\begin{array}{cc}
\nu \nabla c^{T} & c I \\
-\nabla^{2} c+\nu \nu^{T} \nabla^{2} c & (\nabla c \cdot \nu) I+\nu \nabla c^{T}
\end{array}\right)
$$

- Group property:

$$
\nabla_{b} y(2 t, b)=\nabla_{b} y\left(t, g_{t}(b)\right) \cdot \nabla_{b} y(t, b)
$$

- Build the approximation to $\nabla_{b} \boldsymbol{y}(\boldsymbol{t}, \boldsymbol{b})$ along with $\boldsymbol{g}_{t}(\boldsymbol{b})$ in Algorithms $1 \& 2$.


## Multiple Arrival Times



- Source:
- 2D: smooth curve in 3D phase space.
- 3D: smooth surface in 5D phase space.
- Target: point in physical space.
- Trace: family of wave fronts from time index by $t \in\left[t_{0}, t_{1}\right]$.
- 2D: smooth 2D surface in 3D phase space.
- 3D: smooth 3D manifold in 5D phase space.

Problem: compute the number of arrivals and the arrival times (at the targets)
up to time $\boldsymbol{T}$.

## Single Source / Multiple Targets

- Choose a time step $\boldsymbol{\Delta T}$ and a tolerance $\boldsymbol{\lambda}>\mathbf{0}$.
- Apply the adaptive wave front algorithm with time step $\Delta T$ to construct the final wave front at time $T$; the algorithm provides the values $\tilde{\boldsymbol{y}}\left(k \Delta T, r_{i}\right)$ for $0 \leq k \leq T / \Delta T$.
- Approximate the trace by linear interpolation of the sampled values $\tilde{y}\left(k \Delta T, r_{i}\right)$-represented by a triangle mesh in phase space. The computed trace is piecewise linear.
- Project the approximate trace $\tilde{\boldsymbol{y}}$ onto physical space (i.e. discard $\nu$ ).
- For each target point, check whether it is covered by nearby projected triangles. If so, the arrival and arrival time are recorded.


## Single Source and Single Target

Adaptive version

- Wasteful to compute the full trace
- Basic idea is to throw away large parts of the trace before construction
- Efficient algorithm


## Details

- The nearby triangles can be collected efficiently using a bounding box test.
- Inside/outside test for each triangle is carried out using the determinant test (standard in computational geometry).
- The discretization of the source is not fixed and is refined as the wave front evolves.
- The parameters $\Delta T$ and $\lambda$ control the accuracy.
- $\Delta T$ and $\lambda$ are of the order of $\sqrt{\varepsilon}$ suffice for an error tolerance of $\varepsilon$ for the trace approximation.
- Accuracy of arrival times is then $\boldsymbol{O}(\varepsilon)$.


## Example 1

- Velocity field (2D waveguide)

$$
c(x, y)=\frac{1}{1+\mathrm{e}^{-64 \cdot(y-1 / 2)^{2}}}
$$



- The initial wave front is a planar wave at $\boldsymbol{x}=0$.


## Example 1: wave front construction



## Example 1: wave front construction




MATLAB implementation on a desktop computer with a 2.6 GHz CPU and 1 GB of memory.

- Uniform grid with 64 points in $y$ and 128 points in $\theta$.
- The construction of $\tilde{g}_{T_{0}}$ takes about 2 seconds.
- Accuracy of computed phase map is about $10^{\mathbf{- 5}}$.
- Adaptive wave front propagation up to $T=4$
- Final wave front has about 600 samples
- Takes about 0.064 second
- MATLAB's ODE solver takes about 0.08 second to trace a single ray
- Speedup factor is about 750


## Example 1: accuracy

| Discretization vs. $T_{\mathbf{0}}$ | 0.0625 | 0.125 | 0.25 | 0.5 |
| :---: | :---: | :---: | :---: | :---: |
| $(16,32)$ | $4.991 \mathrm{e}-04$ | $1.034 \mathrm{e}-03$ | $2.316 \mathrm{e}-03$ | $5.252 \mathrm{e}-03$ |
| $(32,64)$ | $2.301 \mathrm{e}-05$ | $4.563 \mathrm{e}-05$ | $8.344 \mathrm{e}-05$ | $3.787 \mathrm{e}-04$ |
| $(64,128)$ | $1.274 \mathrm{e}-06$ | $2.759 \mathrm{e}-06$ | $5.195 \mathrm{e}-06$ | $7.343 \mathrm{e}-06$ |
| $(128,256)$ | $1.133 \mathrm{e}-07$ | $1.755 \mathrm{e}-07$ | $3.901 \mathrm{e}-07$ | $6.016 \mathrm{e}-07$ |

High accuracy with small sample size.

## Example 1: amplitude computation



## Example 1: multiple arrivals



## Example 2

- Velocity field: $a=(1 / 4,1 / 4), b=(3 / 4,3 / 4)$

$$
c(x, y)={\frac{1}{1+3 \mathrm{e}^{-64|x-a|^{2}}+3 \mathrm{e}^{-64|x-b|^{2}}}{ }^{2}}^{2}
$$



- The initial wave front is a small circle centered at $(\mathbf{1} / \mathbf{2}, \mathbf{1} / \mathbf{2})$.


## Example 2 (wave front construction)



Speed up factor is 200

## Example 2 (amplitude computation)



amplitude at $\mathrm{t}=1.5$


## Example 2 (multiple arrivals)



## Example 3

- Velocity field (3D waveguide)

$$
c(x, y, z)=\frac{1}{1+\mathrm{e}^{-64 \cdot(x-1 / 2)^{2}-64 \cdot(y-1 / 2)^{2}}}
$$



- The initial wave front is a plane wave at $z=0$.


## Example 3 (wave front construction)




## Example 3 (wave front construction)



## Example 3 (amplitude computation)




## Example 3 (multiple arrivals)



## Example 4

- Velocity field (3D waveguide)

$$
c(x, y, z)=\frac{1}{1+\mathrm{e}^{-64\left(t(x-1 / 2)^{2}+(y-1 / 2)^{2}\right)}}
$$



- The initial wave front is a small sphere centered at $(\mathbf{1} / 2,1 / 2,1 / 2)$.


## Example 4



## Example 4



## Example 5

- Velocity field: $a=(1 / 4,1 / 4,1 / 2), b=(3 / 4,3 / 4,1 / 2)$

$$
c(x, y)=\frac{1}{1+3 \mathrm{e}^{-64|x-a|^{2}}+3 \mathrm{e}^{-64|x-b|^{2}}}
$$



- The initial wave front is a small sphere centered at $(\mathbf{1} / \mathbf{2}, \mathbf{1} / \mathbf{2}, \mathbf{1} / \mathbf{2})$.


## Example 5



## wave front at $\mathrm{t}=1.125$



- $T_{0}=0.0625$ and $\tau=2^{-10}$ in the wave front construction algorithm.
- Cartesian grid with $16,16,16,32$ and 16 points in $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{\theta}$ and $\phi$.
- $\tilde{g}_{T_{0}}$ is constructed within 900 second and has accuracy around $10^{-4}$.
- Adaptive wave front propagation up to $\boldsymbol{T}=\mathbf{1 . 5}$. The final wave front is resolved with $\mathbf{3 7 ,} 000$ samples.


## Summary

The phase flow method: novel approach to integrate ODEs.

- Bootstrapping in time domain using the group property of the phase flow.
- Efficient and accurate
- Inserting rays is effortless
- Many applications: e.g. geodesic flows on surfaces
- Further developments: piecewise smooth velocity fields


## Epilogue: Curvelet and Wave Equations

New curvelet multiscale pyramid

- Multiscale
- Multi-orientations
- Parabolic (anisotropy) scaling

$$
w i d t h \approx l e n g t h^{2}
$$

- Indexed by phase space

Curvelet expansion

$$
f=\sum_{\mu}\left\langle f, \varphi_{\mu}\right\rangle \varphi_{\mu} \quad\|f\|_{2}^{2}=\sum_{\mu}\left\langle f, \varphi_{\mu}\right\rangle^{2}
$$

## Digital Curvelets



## Curvelets and Wave Equations, I

## Curvelets and Wave Equations, II

Wave equation

$$
u_{t t}-c^{2}(x) \Delta u=0
$$

with $u(0, x)$ and $u_{t}(0, x)$ as initial data.

The curvelet matrix of a wide range of wave propagators is optimally sparse: the coefficients decay nearly exponentially fast away from a shifted diagonal.


Sketch of the curvelet representation of the wave propagator

## Fast Wave Propagation?

$$
\begin{gathered}
u_{t}=e^{-P t} u_{0} \\
\\
u_{0} \xrightarrow{e^{-P t}} u_{t} \\
F \downarrow \downarrow \downarrow^{F} \\
\boldsymbol{\theta}_{0} \xrightarrow[A(t)]{ } \theta_{t}
\end{gathered}
$$

For any $\boldsymbol{t}, \boldsymbol{A}(\boldsymbol{t})$ is sparse

Background: Fast and accurate Digital Curvelet Transform is available (with Demanet, Donoho and Ying).

