The Phase Flow Method

Emmanuel Candès, California Institute of Technology

Workshop on High Frequency Waves CSCAMM, University of Maryland, September 2005

Collaborators: Lexing Ying (Caltech)

Agenda

- The phase flow method
- Applications in computational high frequency wave propagation
 - Wave front propagation
 - Amplitude computations
 - Multiple arrival times computations
- Numerical results
- Epilogue

Problem Statement

• Nonlinear autonomous ODE

$$rac{\mathrm{d} y}{\mathrm{d} t} = F(y), \quad t>0,$$

where $y: \mathbf{R} \to \mathbf{R}^d$ and $F: \mathbf{R}^d \to \mathbf{R}^d$ is smooth.

- Compute $y(T) = y(T, y_0)$ for many initial conditions y_0 .
- Standard approach: time step au and local integration rule for each y_0 .
- Not very efficient.

Terminology

- Phase map: $g_t : \mathbb{R}^d \to \mathbb{R}^d$ defined by $g_t(y_0) = y(t, y_0)$.
- *Phase flow*: collection of all phase maps $\{g_t, t \in \mathbf{R}\}$.
- A manifold $M \subset \mathbb{R}^d$ is *invariant* if $g_t(M) \subset M$.

Example: Bicharacteristic Flow

Ray equations in phase space $\mathbf{R}^d imes \mathbf{R}^d$, d=2,3

$$rac{\mathrm{d}x}{\mathrm{d}t} =
abla_p H(x,p), \quad rac{\mathrm{d}p}{\mathrm{d}t} = -
abla_x H(x,p),$$

with Hamiltonian H(x, p)

$$H(x,p)=c(x)|p|,$$

- Autonomous
- Wish to integrate for each $y_0 = (x_0, p_0) \in \Sigma_0$ (initial wave front)
- Invariant manifold *M*:
 - $\mathbf{R}^d imes \mathbf{R}^d$
 - $\mathbf{R}^d imes S^{d-1}$
 - $[0,1]^3 imes S^{d-1}$

Key Structure

Rapid construction of the complete phase map g_T at time T.

- 1. Discretization. Start with a uniform or quasi-uniform grid M_h on M.
- 2. Initialization. Fix a small time step au and compute an approximation of $g_{ au}$.
 - For each $y_0 \in M_h, g_{ au}(y_0)$ is computed by a standard ODE integration rule
 - The value of g_{τ} at any other point is defined via local interpolation.
- 3. Loop. Construct $g_{2^k\tau}$ from $g_{2^{k-1}\tau}$
 - For each $y_0 \in M_h, g_ au(y_0)$

$$g_{2^k\tau}(y_0) = g_{2^{k-1}\tau}(g_{2^{k-1}\tau}(y_0))$$

• Otherwise, local interpolation.

Key point: Systematic use of already computed information

Peek at the results

- Very efficient
- Surprisingly accurate

Algorithm 1 (Basic Version)

- Parameter selection. Select a grid size h > 0, a time step $\tau > 0$, and an integer constant $S \ge 1$ such that $B = (T/\tau)^{1/S}$ is an integer power of 2.
- Discretization. Select a uniform or quasi-uniform grid $M_h \subset M$ of size h.
- Burn-in. Compute \tilde{g}_{τ} .
 - For a gridpoint y_0 , $\tilde{g}_{\tau}(y_0)$ is calculated by applying the ODE integrator.
 - Construct an interpolant and compute $\tilde{g}_{\tau}(y_0)$ by evaluating the interpolant outside of the grid.
- Loop. For $k = 1, \ldots, S$, evaluate $\tilde{g}_{B^k \tau}$.
 - $\tilde{g}_{B^k\tau}(y_0) = (\tilde{g}_{B^{k-1}\tau})^{(B)}(y_0)$ for each y_0 on the grid.
 - Construct an interpolant which and use it for out-of-grid evaluation.
- Terminate. When k = S, we hold \tilde{g}_t , for $t = \tau, 2\tau, 4\tau, 8\tau, \ldots, T$ and more.

Main Result

- ODE integrator is of order α .
- Local interpolation scheme is of order $\beta \geq 2$.
- Size of grid is $O(h^{-d_M})$

Approximation error at time t

$$arepsilon_t = \max_{b \in M} |g_t(b) - ilde{g}_t(b)|.$$

(i) The approximation error obeys

$$\varepsilon_T \leq C \cdot (\tau^{\alpha} + h^{\beta})$$

- (ii) The complexity is $O(au^{-1/S} \cdot h^{-d_M})$.
- (iii) For each $y \in M$, $\tilde{g}_T(y)$ can be computed in O(1) operations.
- (iv) For any intermediate time $t = m\tau \leq T$ and $y \in M$, $\tilde{g}_t(y)$ is evaluated in $O(\log(1/\tau))$ operations.

Asymptopia

Balancing of errors $h^eta \sim au^lpha$

- Accuracy $O(au^{lpha})$
- Complexity $O(au^{-r})$, $r = d_M lpha / eta + 1/S$.

Suppose that M and F are sufficiently smooth, and choose β and S s.t. r < 1.

In an asymptotic sense, one can compute an approximation to the entire phase map g_T much faster than one computes—with the same order of accuracy—a single solution with the standard ODE integration rule.

Variation I: Time-doubling

Select B=2, and construct $g_{2^k au}$ from $g_{2^{k-1} au}$ via

$$g_{2^k\tau}(y_0) = g_{2^{k-1}\tau}(g_{2^{k-1}\tau}(y_0))$$

- Complexity is lower $O(h^{-d_M}\log(1/ au))$
- Accuracy is reduced $O((au^lpha+h^eta)/ au)$

Variation II: Algorithm 2 (Practical Version)

For large times, g_T may become quite oscillatory, and one would need a very fine initial spatial resolution.

- (a) Choose $T_0 = O(1)$, $T = mT_0$, such that g_{T_0} remains non-oscillatory and pick h so that the grid is sufficiently dense to approximate g_{T_0} accurately.
- (b) Construct \tilde{g}_{T_0} using Algorithm 1.
- (c) For any y_0 , define $\tilde{g}_T(y_0)$ by $\tilde{g}_T(y_0) = (\tilde{g}_{T_0})^{(m)}(y_0)$.

Problem specific components

- Discretization of \boldsymbol{M}
- ODE integration rule
- Local interpolation scheme

Geometrical Optics

• Inhomogeneous scalar wave equation in 2D and 3D:

$$u_{tt}-c^2(x)\Delta u=0,\quad t>0.$$

• High-frequency expansion (WKB)

$$u(t,x) = e^{i\lambda\Phi(t,x)}\sum_{n\geq 0}A_n(t,x)(i\lambda)^{-n}$$

where Φ and A_n are smooth.

• Eikonal equations

 $\Phi_t \pm c(x) |\nabla \Phi| = 0.$

• Bicharacteristics equations:

$$rac{\mathrm{d}x}{\mathrm{d}t} = c(x)rac{p}{|p|}, \quad rac{\mathrm{d}p}{\mathrm{d}t} = -
abla c(x)|p|$$

- Reduced Hamiltonian flow, p=|p|
u

$$rac{\mathrm{d}x}{\mathrm{d}t} = c(x)
u, \quad rac{\mathrm{d}
u}{\mathrm{d}t} = -
abla c(x) + (
abla c(x) \cdot
u)
u$$

or compactly dy/dt = F(y).

- Assume c(x) is periodic on $[0,1]^d$ (can be relaxed).
- $M = \{(x,\nu) \in [0,1]^d \times S^{d-1}\}$ compact and smooth.

The Phase Flow Method for HFWP (2D)

• $M = [0,1]^2 \times [0,2\pi]$

$$rac{\mathrm{d}x}{\mathrm{d}t} = c(x,y)\cos heta, \quad rac{\mathrm{d}y}{\mathrm{d}t} = c(x,y)\sin heta, \quad rac{\mathrm{d} heta}{\mathrm{d}t} = c_x\sin heta - c_y\cos heta$$

- ODE integrator: 4th order Runge-Kutta
- Cartesian uniform grid on $M = [0,1]^2 imes [0,2\pi]$
- Local interpolation:
 - Interpolate the periodic shift $g_t(y) y$ instead of $g_t(y)$.
 - Interpolation of a periodic function on a Cartesian grid.
 - Solution: tensor-product Cardinal B-spline (interpolant is constructed by means of FFT's).

The Phase Flow Method for HFWP (3D)

- $M=[0,1]^3 imes S^2$
- ODE integrator: 4th order Runge-Kutta
- Discretization
 - Uniform Cartesian grid in $x \in [0,1]^3$
 - Spherical coordinates in $u \in S^2$

 $u(\theta,\phi) = (\cos\theta\sin\phi,\sin\theta\sin\phi,\cos\phi)$

with sample points $(0, h, \cdots, 2\pi - h) imes (h/2, \cdots, \pi - h/2)$.

- Local interpolation
 - Cardinal B-splines in x.
 - Cardinal B-splines in ν (after periodic extension trick)

$$f^e(heta,\phi) = egin{cases} f(heta,\phi) & \phi\in[0,\pi) \ f(heta+\pi,-\phi) & \phi\in[-\pi,0) \end{cases}$$

 f^e is periodic on $[0,2\pi] imes[-\pi,\pi].$

Wave Front Construction

Initial wave front $y_0(r) = (x_0(r), \nu_0(r))$ propogated up to time T. Basic algorithm:

- Choose T_0 and construct \tilde{g}_{T_0} .
- Discretize the wave front by sampling $y_0(r)$ at the points r_i .
- For each r_i , approximate $y(T, r_i)$ with $\tilde{y}(T, r_i) = (\tilde{g}_{T_0})^{(m)}(y_0(r_i))$ where $T = mT_0$.
- Connect $\tilde{x}(T, r_i)$ to construct the final wave front.

2D Adaptive Wave Front Construction

Choose a tolerance λ , and sample the initial wave front with $R = \{r_i\}$ s.t.

$$|{y}_0(r_i)-{y}_0(r_{i+1})|\leq \lambda$$

For $k=1,\cdots,T/T_0$

- For any $r_i \in R$, $ilde{y}(kT_0,r_i) = ilde{g}_{T_0}(ilde{y}((k-1)T_0,r_i)).$
- For any interval $I_i := [r_i, r_{i+1}]$ s.t. $| ilde{y}(kT_0, r_i) ilde{y}(kT_0, r_{i+1})| > \lambda$:
 - Insert N_i new samples $\{r_\ell\}$ evenly distributed in I_i ;

$$N_i = \lceil | ilde{y}(kT_0,r_i) - ilde{y}(kT_0,r_{i+1})|/\lambda
ceil.$$

– The values $ilde{y}(kT_0,r_\ell)$ at the new points are computed using

$$ilde{y}(kT_0,r_\ell) = (ilde{g}_{T_0})^{(k)}(y_0(r_\ell))$$

Inserting Rays

Standard Lagrange type methods insert new rays by interpolating nearby sampled values.

- Difficult (unstructured grid)
- Low accuracy

Effortless and accurate with the phase flow method.

Refinement condition.

• Standard methods need to use

$$| ilde{y}(kT_0,r_i)- ilde{y}(kT_0,r_j)|>\lambda.$$

• Here,

$$|x(kT_0,r_i)-x(kT_0,r_j)|>\lambda$$

is sufficient since interpolation is not used. Increased efficiency.

Amplitude Computation, I

Squeezing and spreading of rays

$$\frac{A_0(x(t,r))}{A_0(x(0,r))} = \sqrt{\frac{|\partial_r x(0,r)|}{|\partial_r x(t,r)|} \cdot \frac{c(x(t,r))}{c(x(0,r))}}$$
(2D)
$$\frac{A_0(x(t,r,s))}{A_0(x(0,r,s))} = \sqrt{\frac{|\partial_r x(0,r,s) \times \partial_s x(0,r,s)|}{|\partial_r x(t,r,s) \times \partial_s x(t,r,s)|} \cdot \frac{c(x(t,r,s))}{c(x(0,r,s))}}$$
(3D)

- Additional information is needed: $\partial_r x(t,r)$ in 2D and $\partial_r x(t,r,s)$ and $\partial_s x(t,r,s)$ in 3D.
- It is sufficient to know $\nabla_b y(t,b)$.
- Approximate the gradient of the phase map along with the phase map.

Amplitude Computation, II

• Linear equation for $\nabla_b y(t,b)$.

$$rac{\mathrm{d}
abla_b y(t,b)}{\mathrm{d} t} =
abla_y F(y(t,b)) \cdot
abla_b y(t,b), \quad
abla_b y(0,b) = I.$$

with

$$abla_y F(y) = egin{pmatrix}
u
abla c^T & c I \
-
abla^2 c +
u
u^T
abla^2 c & (
abla c \cdot
u) I +
u
abla c^T \end{pmatrix}$$

• Group property:

$$abla_b y(2t,b) =
abla_b y(t,g_t(b)) \cdot
abla_b y(t,b).$$

• Build the approximation to $\nabla_b y(t, b)$ along with $g_t(b)$ in Algorithms 1 & 2.

Multiple Arrival Times

- Source:
 - 2D: smooth curve in 3D phase space.
 - 3D: smooth surface in 5D phase space.
- *Target*: point in physical space.
- *Trace*: family of wave fronts from time index by $t \in [t_0, t_1]$.
 - 2D: smooth 2D surface in 3D phase space.
 - 3D: smooth 3D manifold in 5D phase space.

Problem: compute the number of arrivals and the arrival times (at the targets) up to time T.

Single Source / Multiple Targets

- Choose a time step ΔT and a tolerance $\lambda > 0$.
- Apply the adaptive wave front algorithm with time step ΔT to construct the final wave front at time T; the algorithm provides the values $\tilde{y}(k\Delta T, r_i)$ for $0 \le k \le T/\Delta T$.
- Approximate the trace by linear interpolation of the sampled values $\tilde{y}(k\Delta T, r_i)$ —represented by a triangle mesh in phase space. The computed trace is piecewise linear.
- Project the approximate trace \tilde{y} onto physical space (i.e. discard ν).
- For each target point, check whether it is covered by nearby projected triangles. If so, the arrival and arrival time are recorded.

Single Source and Single Target

Adaptive version

- Wasteful to compute the full trace
- Basic idea is to throw away large parts of the trace before construction
- Efficient algorithm

Details

- The nearby triangles can be collected efficiently using a bounding box test.
- Inside/outside test for each triangle is carried out using the determinant test (standard in computational geometry).
- The discretization of the source is not fixed and is refined as the wave front evolves.
- The parameters ΔT and λ control the accuracy.
 - ΔT and λ are of the order of $\sqrt{\varepsilon}$ suffice for an error tolerance of ε for the trace approximation.
 - Accuracy of arrival times is then $O(\varepsilon)$.

• Velocity field (2D waveguide)

• The initial wave front is a planar wave at x = 0.

Example 1: wave front construction

Example 1: wave front construction

MATLAB implementation on a desktop computer with a 2.6GHz CPU and 1GB of memory.

- Uniform grid with 64 points in y and 128 points in θ .
- The construction of \tilde{g}_{T_0} takes about 2 seconds.
- Accuracy of computed phase map is about 10^{-5} .
- Adaptive wave front propagation up to T = 4
 - Final wave front has about 600 samples
 - Takes about 0.064 second
 - MATLAB's ODE solver takes about 0.08 second to trace a single ray
 - Speedup factor is about 750

Example 1: accuracy

Discretization vs. T_0	0.0625	0.125	0.25	0.5
(16,32)	4.991e-04	1.034e-03	2.316e-03	5.252e-03
(32,64)	2.301e-05	4.563e-05	8.344e-05	3.787e-04
(64,128)	1.274e-06	2.759e-06	5.195e-06	7.343e-06
(128,256)	1.133e-07	1.755e-07	3.901e-07	6.016e-07

High accuracy with small sample size.

Example 1: amplitude computation

Example 1: multiple arrivals

• Velocity field: a = (1/4, 1/4), b = (3/4, 3/4)

• The initial wave front is a small circle centered at (1/2, 1/2).

Example 2 (wave front construction)

Speed up factor is 200

Example 2 (amplitude computation)

Example 2 (multiple arrivals)

• Velocity field (3D waveguide)

• The initial wave front is a plane wave at z = 0.

Example 3 (wave front construction)

Example 3 (wave front construction)

Example 3 (amplitude computation)

Example 3 (multiple arrivals)

• Velocity field (3D waveguide)

• The initial wave front is a small sphere centered at (1/2, 1/2, 1/2).

• Velocity field: a = (1/4, 1/4, 1/2), b = (3/4, 3/4, 1/2)

• The initial wave front is a small sphere centered at (1/2, 1/2, 1/2).

- $T_0 = 0.0625$ and $\tau = 2^{-10}$ in the wave front construction algorithm.
- Cartesian grid with 16, 16, 16, 32 and 16 points in x, y, z, θ and ϕ .
- \tilde{g}_{T_0} is constructed within 900 second and has accuracy around 10^{-4} .
- Adaptive wave front propagation up to T = 1.5. The final wave front is resolved with 37,000 samples.

Summary

The phase flow method: novel approach to integrate ODEs.

- Bootstrapping in time domain using the group property of the phase flow.
- Efficient and accurate
- Inserting rays is effortless
- Many applications: e.g. geodesic flows on surfaces
- Further developments: piecewise smooth velocity fields

Epilogue: Curvelet and Wave Equations

New curvelet multiscale pyramid

- Multiscale
- Multi-orientations
- Parabolic (anisotropy) scaling

 $width \approx length^2$

• Indexed by phase space

Curvelet expansion

$$f = \sum_{\mu} \langle f, arphi_{\mu}
angle arphi_{\mu} \qquad ||f||_2^2 = \sum_{\mu} \langle f, arphi_{\mu}
angle^2$$

Digital Curvelets

Curvelets and Wave Equations, I

$$u_{tt} - c^2(x)\Delta u = 0$$

The action of the wave propagator on a curvelet is well- approximated by a rigid motion along the Hamiltonian flow.

Curvelets and Wave Equations, II

Wave equation

$$u_{tt} - c^2(x)\Delta u = 0,$$

with u(0, x) and $u_t(0, x)$ as initial data.

The curvelet matrix of a wide range of wave propagators is optimally sparse: the coefficients decay nearly exponentially fast away from a shifted diagonal.

Sketch of the curvelet representation of the wave propagator

Fast Wave Propagation?

$$u_t = e^{-Pt} u_0$$

For any t, A(t) is sparse

Background: Fast and accurate Digital Curvelet Transform is available (with Demanet, Donoho and Ying).