
A Survey of Computational High
Frequency Wave Propagation I

Bjorn Engquist
University of Texas at Austin

CSCAMM Workshop on High Frequency Wave Propagation,
University of Maryland, September 19 - 22, 2005



Outline
1. Wave equations, scales and computational complexity
2. All frequency equations
3. Geometrical optics
4. High frequency approximations
5. Concluding remarks



1. Wave equations, scales and
computational complexity

We will consider wave equations on the forms

• Scalar ()

• Elastic

• Maxwell

• (Schrödinger)
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Computational challenge

A major challenge in simulations based on wave equations is
computations at high frequencies. We mean here high frequencies
relative to the size of the computational domain in space and time.

high frequency → short wave length → highly oscillatory solution

The equations does not define the wave lengths or scales. They
originate from geometry, initial and boundary conditions. (The same
Maxwell’s equations are valid from atomistic to galactic scales.)
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The challenge are met by efficient numerical methods (c
computational cost increases with increasing frequency ω) or by
appropriate high frequency approximations (accuracy increases with
increasing frequency ω).

Effective high frequency equations also give analytic insight (micro-
local analysis) into the solution of wave equations, for example,
propagation of singularities.



Computational complexity

• A major reason for deriving effective equations with a narrow
range of scales in space and time is the high computational cost
of directly solving multi-scale problems.

• Let the size of the computational domain = 1 in each dimension
and the smallest wavelength=ε. The typical number of
operations to achieve a prescribed accuracy in the solution of a
multi-scale differential equation in d dimensions is,
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N(ε): number of unknowns per wavelength to achieve a given
accuracy (N(ε)≥2 from Shannon sampling theorem,
N(ε)≈ O(ε-1/2) for standard second order finite difference
methods).

ε: the shortest wavelength to be approximated
d: number of dimensions
r: exponent for number of flops per unknown in the numerical

method (r=1 for explicit methods and r=3 for Gaussian
elimination of dense matrices)

If r=1 and N(ε) is bounded by a constant we have,
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Even with the best possible numerical methods                       , and
this prohibits numerical simulation based on a full wave equation at
high frequencies.

Note the limited role of adaptivity.

The upper limit for a teraflop computer is thus practically ε=10-4  with
10000 degrees of freedom in each dimension, R3+1.

The number of wavelengths of light would be more than 1010 in
dimensions of a typical room.
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2. All frequency approximations

There are other types of approximations than the ones for high
frequencies, which reduces the computational complexity. Examples
are,

– Reduction in size of computational domain
– Reduction in number of independent variables

• Frequency domain
• Symmetries

– Reduced class of solutions
– Reductions based on simple c(x)
– Hybrid methods
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All frequency approximations
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Frequency domain

        Mode equation         
waveguides
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    paraxial equation    
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   wave equation   

 geometric simplifications, 
symmetries, etc 
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Example of geometric approximations in the relative low frequency
regime. Electro-magnetic field - wire interaction. Also example of
Sub-grid scale modeling.
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 Frequency domain 
 

   wave equation   

 ABC, PML ABC, PML

 integral equation 
 potential theory 

 integral equation 
 potential theory 

 Physical 
optics  OSRC  GO-based 

 integral eq 



2. Geometrical optics
Geometrical optics equations are effective equations for high
frequency wave propagation. Instead of directly approximating highly
oscillatory functions geometrical optics gives the phase φ(x,t) and
amplitude A(x,t).

In this case the effective formulation were known long before the wave
equation form.

Note that new variables are introduced different from the strong or
weak limit of the original dependent variables.





Scalar wave equation

The velocity is denoted by c and the initial values are assumed to be
highly oscillatory such that the following form is appropriate,
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Insert the expansion into the wave equation and equate the different
orders of ω (=ε-1). The leading equations give the eikonal and transport
equations that do not contain ω,

The traditional ray tracing can be seen as the method of
characteristics applied to the eikonal equation,! 
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Remarks
• The analysis discussion above fails at boundaries. The geometrical

theory of diffraction (GTD) adds correction terms for diffraction at
corners and introduces the presence of creeping waves of the shadow
zone.

• The approach extends to frequency domain formulations and other
differential equations, for example, linear elasticity and Maxwell’s
equations.

• Compare WKB, Wigner transforms, path integrals and the Schrödinger
equation.

• The nonlinear eikonal equation is of Hamilton Jacoby type and follows
the viscosity solution theory.

• If c(x) = c(x,x/ε) is oscillatory, homogenization (ε << ω-1), geometrical
optics (ε >> ω-1) or special expansions (ε ≈ ω-1) apply.



4. High frequency approximations

The eikonal equation argument is the starting point for a wide class
of formulations describing a wave equation solution for high
frequencies. Compare semi classical approximations of quantum
mechanics.

Some formulations are equivalent to the eikonal equations and
some improves on geometrical optics.
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high frequency approximations

   wave equation   

 eikonal eq.        Liouville eq.   GO: ray eq.   

 wave front 
 dynamics 
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high frequency approximations

   wave equation   

 eikonal eq.        Liouville eq.   GO: ray eq.   

 GTD 

 moment eq. 
 wave front 
 dynamics 
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high frequency approximations

   wave equation   

 eikonal eq.        Liouville eq.   GO: ray eq.   

 GTD  Gaussian  
beams

 moment eq. 
 wave front 
 dynamics 
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5. Concluding remarks

Revisiting computational complexity

• O(ω4(1+1/p)), wave equation, time domain.
• O(ω3(1+1/p)r), wave equation, frequency domain, 1≤?≤r≤7/3.
• O(ω2r), boundary integral formulation (MoM), 1≤r ≤3 (from

optimal iterative fast methods to direct methods).

• The complexity of simulation based on high frequency
approximations are not ω dependent or improves with
increasing ω.

• The trade off point in ω increases with increasing computing
power and is problem and accuracy dependent.

• Note the possibility of hybridizing formulations


