High Frequency Scattering by Convex Polygons
 Stephen Langdon
 University of Reading, UK

Joint work with: Simon Chandler-Wilde, Steve Arden

Funded by: Leverhulme Trust

University of Maryland, September 2005

Contents

- The scattering problem
- The Burton \& Miller integral equation
- Understanding solution behaviour
- Approximating the solution efficiently
- Galerkin method
- Collocation method
- Numerical Results

The Scattering Problem

$$
\Delta u+k^{2} u=0
$$

obstacle

Green's representation theorem:

$$
u(x)=u^{i}(x)-\int_{\Gamma} \Phi(x, y) \frac{\partial u}{\partial n}(y) d s(y), \quad x \in D
$$

where $\Phi(x, y):=\frac{\mathrm{i}}{4} H_{0}^{(1)}(k|x-y|)$.

$$
\Delta u+k^{2} u=0
$$

u^{i}, incident wave

$$
u=0 \quad D
$$

From Green's representation theorem (Burton \& Miller 1971):

$$
\frac{1}{2} \frac{\partial u}{\partial n}(x)+\int_{\Gamma}\left(\frac{\partial \Phi(x, y)}{\partial n(x)}+\mathrm{i} \eta \Phi(x, y)\right) \frac{\partial u}{\partial n}(y) d s(y)=f(x), \quad x \in \Gamma
$$

where

$$
f(x):=\frac{\partial u^{i}}{\partial n}(x)+\mathrm{i} \eta u^{i}(x) .
$$

$$
\Delta u+k^{2} u=0
$$

$$
u^{i} \text {, incident wave } \quad u=0
$$

From Green's representation theorem:

$$
\frac{1}{2} \frac{\partial u}{\partial n}(x)+\int_{\Gamma}\left(\frac{\partial \Phi(x, y)}{\partial n(x)}+\mathrm{i} \eta \Phi(x, y)\right) \frac{\partial u}{\partial n}(y) d s(y)=f(x), \quad x \in \Gamma
$$

Theorem (follows from Burton \& Miller 1971, Selepov 1969) If $\eta \in \mathbb{R}$, $\eta \neq 0$, then this integral equation is uniquely solvable in $L^{2}(\Gamma)$.

$$
\frac{1}{2} \frac{\partial u}{\partial n}(x)+\int_{\Gamma}\left(\frac{\partial \Phi(x, y)}{\partial n(x)}+\mathrm{i} \eta \Phi(x, y)\right) \frac{\partial u}{\partial n}(y) d s(y)=f(x), \quad x \in \Gamma
$$

Conventional BEM: Apply a Galerkin method, approximating $\partial u / \partial n$ by a piecewise polynomial of degree P, leading to a linear system to solve with N degrees of freedom. Problem: N of order of $k L$, where L is linear dimension, so cost is $O\left(N^{2}\right)$ to compute full matrix and apply iterative solver \ldots or close to $O(N)$ if a fast multipole method (e.g. Amini \& Profit 2003, Darve 2004) is used.

This is fantastic but still infeasible as $k L \rightarrow \infty$.

$$
\frac{1}{2} \frac{\partial u}{\partial n}(x)+\int_{\Gamma}\left(\frac{\partial \Phi(x, y)}{\partial n(x)}+\mathrm{i} \eta \Phi(x, y)\right) \frac{\partial u}{\partial n}(y) d s(y)=f(x), \quad x \in \Gamma .
$$

Alternative: Reduce N by using new basis functions, e.g.
(i) approximate $\partial u / \partial n$ by taking a large number of plane waves and multiplying these by conventional piecewise polynomial basis functions (Perrey-Debain et al. 2003, 2004). This is very successful (in 2D, 3D, for acoustic/elastic waves and Neumann/impedance b.c.s), reducing number of degrees of freedom per wavelength from e.g. 6-10 to close to 2 . However N still increases proportional to $k L$.

$$
\frac{1}{2} \frac{\partial u}{\partial n}(x)+\int_{\Gamma}\left(\frac{\partial \Phi(x, y)}{\partial n(x)}+\mathrm{i} \eta \Phi(x, y)\right) \frac{\partial u}{\partial n}(y) d s(y)=f(x), \quad x \in \Gamma
$$

Alternative: Reduce N by using new basis functions, e.g.
(ii) for convex scatterers, remove some of the oscillation by factoring out the oscillation of the incident wave, i.e. writing

$$
\frac{\partial u}{\partial n}(y)=\frac{\partial u^{i}}{\partial n}(y) \times F(y)
$$

and approximating F by a conventional BEM (e.g. Abboud et al. 1994, Darrigrand 2002, Bruno et al 2004).

Alternative: Reduce N by using new basis functions, e.g.
(ii) for convex scatterers, remove some of the oscillation by factoring out the oscillation of the incident wave, i.e. writing

$$
\begin{equation*}
\frac{\partial u}{\partial n}(y)=\frac{\partial u^{i}}{\partial n}(y) \times F(y) \tag{*}
\end{equation*}
$$

and approximating F by a conventional BEM.

For smooth obstacles this works well: equation $(*)$ holds with $F(y) \approx 2$ on the illuminated side (physical optics) and $F(y) \approx 0$ in the shadow zone.
(ii) for convex scatterers, remove some of the oscillation by factoring out the oscillation of the incident wave, i.e. writing

$$
\frac{\partial u}{\partial n}(y)=\frac{\partial u^{i}}{\partial n}(y) \times F(y) \quad(*)
$$

and approximating F by a conventional BEM. Not very effective for non-smooth scatterers.

Understanding solution behaviour

be the Dirichlet Green function for the left half-plane Ω. By Green's representation theorem,

$$
u(x)=u^{i}(x)+u^{r}(x)+\int_{\partial \Omega \backslash \Gamma} \frac{\partial G(x, y)}{\partial n(y)} u(y) d s(y), \quad x \in \Omega .
$$

Understanding solution behaviour

$$
\begin{gathered}
u(x)=u^{i}(x)+u^{r}(x)+\int_{\partial \Omega \backslash \Gamma} \frac{\partial G(x, y)}{\partial n(y)} u(y) d s(y) \\
\Rightarrow \frac{\partial u}{\partial n}(x)=2 \frac{\partial u^{i}}{\partial n}(x)+2 \int_{\partial \Omega \backslash \Gamma} \frac{\partial^{2} \Phi(x, y)}{\partial n(x) \partial n(y)} u(y) d s(y), \quad x \in \gamma=\partial \Omega \cap \Gamma .
\end{gathered}
$$

 $\phi(s)$ and $\psi(s)$ are $k^{-1} \partial u / \partial n$ and u, at distance s along γ,

$$
\phi(s)=P . O .+\frac{\mathrm{i}}{2}\left[\mathrm{e}^{\mathrm{i} k s} v_{+}(s)+\mathrm{e}^{-\mathrm{i} k s} v_{-}(s)\right]
$$

where

$$
v_{+}(s):=k \int_{-\infty}^{0} F\left(k\left(s-s_{0}\right)\right) \mathrm{e}^{-\mathrm{i} k s_{0}} \psi\left(s_{0}\right) d s_{0}
$$

and $F(z):=\mathrm{e}^{-\mathrm{i} z} H_{1}^{(1)}(z) / z$

$$
\phi(s)=P . O .+\frac{\mathrm{i}}{2}\left[\mathrm{e}^{\mathrm{i} k s} v_{+}(s)+\mathrm{e}^{-\mathrm{i} k s} v_{-}(s)\right]
$$

where

$$
v_{+}(s):=k \int_{-\infty}^{0} F\left(k\left(s-s_{0}\right)\right) \mathrm{e}^{-\mathrm{i} k s_{0}} \psi\left(s_{0}\right) d s_{0}
$$

Now $F(z):=\mathrm{e}^{-\mathrm{i} z} H_{1}^{(1)}(z) / z$ which is non-oscillatory, in that

$$
F^{(n)}(z)=O\left(z^{-3 / 2-n}\right) \text { as } z \rightarrow \infty
$$

$$
\phi(s)=P . O .+\frac{\mathrm{i}}{2}\left[\mathrm{e}^{\mathrm{i} k s} v_{+}(s)+\mathrm{e}^{-\mathrm{i} k s} v_{-}(s)\right]
$$

where

$$
v_{+}(s):=k \int_{-\infty}^{0} F\left(k\left(s-s_{0}\right)\right) \mathrm{e}^{-\mathrm{i} k s_{0}} \psi\left(s_{0}\right) d s_{0}
$$

Now $F(z):=\mathrm{e}^{-\mathrm{i} z} H_{1}^{(1)}(z) / z$ which is non-oscillatory, in that

$$
\begin{gathered}
F^{(n)}(z)=O\left(z^{-3 / 2-n}\right) \text { as } z \rightarrow \infty \\
\Rightarrow v_{+}^{(n)}(s)=O\left(k^{n}(k s)^{-1 / 2-n}\right) \text { as } k s \rightarrow \infty
\end{gathered}
$$

where

$$
k^{-n}\left|v_{+}^{(n)}(s)\right|=O\left((k s)^{-1 / 2-n}\right) \text { as } k s \rightarrow \infty
$$

and (by separation of variables local to the corner),

$$
k^{-n}\left|v_{+}^{(n)}(s)\right|=O\left((k s)^{-\alpha-n}\right) \text { as } k s \rightarrow 0,
$$

where $\alpha<1 / 2$ depends on the corner angle.

$$
\phi(s)=P . O .+\frac{\mathrm{i}}{2}\left[\mathrm{e}^{\mathrm{i} k s} v_{+}(s)+\mathrm{e}^{-\mathrm{i} k s} v_{-}(s)\right]
$$

where

$$
k^{-n}\left|v_{+}^{(n)}(s)\right|= \begin{cases}O\left((k s)^{-1 / 2-n}\right) & \text { as } k s \rightarrow \infty \\ O\left((k s)^{-\alpha-n}\right) & \text { as } k s \rightarrow 0\end{cases}
$$

where $\alpha<1 / 2$ depends on the corner angle.
Thus approximate

$$
\phi(s) \approx P \cdot O \cdot+\frac{\mathrm{i}}{2}\left[\mathrm{e}^{\mathrm{i} k s} V_{+}(s)+\mathrm{e}^{-\mathrm{i} k s} V_{-}(s)\right]
$$

where V_{+}and V_{-}are piecewise polynomials on graded meshes.

Thus approximate

$$
\phi(s) \approx P \cdot O \cdot+\frac{\mathrm{i}}{2}\left[\mathrm{e}^{\mathrm{i} k s} V_{+}(s)+\mathrm{e}^{-\mathrm{i} k s} V_{-}(s)\right]
$$

where V_{+}and V_{-}are piecewise polynomials on graded meshes.

Figure 1: Scattering by a square

Thus approximate

$$
\phi(s) \approx P \cdot O \cdot+\frac{\mathrm{i}}{2}\left[\mathrm{e}^{\mathrm{i} k s} V_{+}(s)+\mathrm{e}^{-\mathrm{i} k s} V_{-}(s)\right]
$$

where V_{+}and V_{-}are piecewise polynomials on graded meshes.

Figure 2: Scattering by a square

Thus approximate

$$
\phi(s) \approx P \cdot O \cdot+\frac{\mathrm{i}}{2}\left[\mathrm{e}^{\mathrm{i} k s} V_{+}(s)+\mathrm{e}^{-\mathrm{i} k s} V_{-}(s)\right]
$$

where V_{+}and V_{-}are piecewise polynomials on graded meshes.

Figure 3: Scattering by a square

Approximation error

Theorem: If V_{+}is the best L_{2} approximation from the approximation space, then

$$
k^{1 / 2}\left\|v_{+}-V_{+}\right\|_{2} \leq C_{p} \frac{n^{1 / 2}\left(1+\log ^{1 / 2}(k L)\right)}{N^{p+1}}
$$

where

- $N \propto$ degrees of freedom
- $p=$ polynomial degree
- $L=$ max side length
- $n=$ number of sides of polygon

Boundary integral equation method

Integral equation in parametric form

$$
\varphi(s)+\mathcal{K} \varphi(s)=F(s)
$$

where

$$
\varphi(s):=\frac{1}{k} \frac{\partial u}{\partial n}(x(s))-P . O . .
$$

Theorem. The operator $(I+\mathcal{K}): L_{2}(\Gamma) \mapsto L_{2}(\Gamma)$ is bijective with bounded inverse

$$
\left\|(I+\mathcal{K})^{-1}\right\|_{2} \leq C
$$

so that the integral equation has exactly one solution.

Boundary integral equation method

Integral equation in parametric form

$$
\varphi(s)+\mathcal{K} \varphi(s)=F(s)
$$

where

$$
\varphi(s):=\frac{1}{k} \frac{\partial u}{\partial n}(x(s))-P . O . .
$$

Difficulty 1 The operator $(I+\mathcal{K}): L_{2}(\Gamma) \mapsto L_{2}(\Gamma)$ is bijective with bounded inverse

$$
\left\|(I+\mathcal{K})^{-1}\right\|_{2} \leq C(k)
$$

where the dependence of $C(k)$ on k is not clear.

Approximation space: seek

$$
\varphi_{N}(s)=\sum_{j=1}^{M} v_{j} \rho_{j}(s) \in V_{N}
$$

where

$$
\rho_{j}(s):=\mathrm{e}^{ \pm \mathrm{i} k s} \times \text { piecewise polynomial supported on graded mesh. }
$$

Question: how do we compute v_{j} ?

Galerkin method

To solve

$$
\varphi(s)+\mathcal{K} \varphi(s)=F(s)
$$

seek $\varphi_{N_{G}} \in V_{N}$ such that

$$
\left(I+P_{N_{G}} \mathcal{K}\right) \varphi_{N_{G}}=P_{N_{G}} F,
$$

where $P_{N_{G}}$ is the orthogonal projection onto the approximation space.
Equivalently

$$
\begin{aligned}
& \left(\varphi_{N_{G}}, \rho\right)+\left(\mathcal{K} \varphi_{N_{G}}, \rho\right)=(F, \rho), \quad \forall \rho \in V_{N} \\
& \Rightarrow \sum_{j=1}^{M} v_{j}\left[\left(\rho_{j}, \rho_{m}\right)+\left(\mathcal{K} \rho_{j}, \rho_{m}\right)\right]=\left(F, \rho_{m}\right)
\end{aligned}
$$

If ρ_{j}, ρ_{m} supported on same side of polygon, integrals not oscillatory.

Galerkin method

Theorem. For $N \geq N^{*}$, the operator $\left(I+P_{N_{G}} \mathcal{K}\right): L_{2}(\Gamma) \mapsto V_{N}$ is bijective with bounded inverse

$$
\left\|\left(I+P_{N_{G}} \mathcal{K}\right)^{-1}\right\|_{2} \leq C_{s}
$$

Galerkin method

Difficulty 2. For $N \geq N^{*}(k)$, the operator $\left(I+P_{N_{G}} \mathcal{K}\right): L_{2}(\Gamma) \mapsto V_{N}$ is bijective with bounded inverse

$$
\left\|\left(I+P_{N_{G}} \mathcal{K}\right)^{-1}\right\|_{2} \leq C_{s}(k)
$$

where the dependence of $N^{*}(k)$ and $C_{s}(k)$ on k is not clear.

Collocation method

To solve

$$
\varphi(s)+\mathcal{K} \varphi(s)=F(s)
$$

seek $\varphi_{N_{C}} \in V_{N}$ such that

$$
\left(I+P_{N_{C}} \mathcal{K}\right) \varphi_{N_{C}}=P_{N_{C}} F,
$$

where $P_{N_{C}}$ is the interpolatory projection onto the approximation space. Equivalently

$$
\begin{gathered}
\varphi_{N_{C}}\left(s_{m}\right)+\mathcal{K} \varphi_{N_{C}}\left(s_{m}\right)=F\left(s_{m}\right), \quad m=1, \ldots, M, \\
\Rightarrow \sum_{j=1}^{M} v_{j}\left[\rho_{j}\left(s_{m}\right)+\mathcal{K} \rho_{j}\left(s_{m}\right)\right]=F\left(s_{m}\right)
\end{gathered}
$$

If ρ_{j} supported on same side of polygon as s_{m}, integrals not oscillatory.

Collocation method

We have not shown that $\left(I+P_{N_{C}} \mathcal{K}\right): L_{2}(\Gamma) \mapsto V_{N}$ is bijective with bounded inverse.

Galerkin vs. Collocation: error analysis

Theorem There exists a constant $C_{p}>0$, independent of k, such that for $N \geq N^{*}$

$$
\begin{aligned}
k^{1 / 2}\left\|\varphi-\varphi_{N_{G}}\right\|_{2} & \leq C_{p} C_{s} \sup _{x \in D}|u(x)| \frac{n^{1 / 2}\left(1+\log ^{1 / 2}(k L / n)\right)}{N^{p+1}} \\
k^{1 / 2}\left|u(x)-u_{N_{G}}(x)\right| & \leq C_{p} C_{s} \sup _{x \in D}|u(x)| \frac{n^{1 / 2}\left(1+\log ^{1 / 2}(k L / n)\right)}{N^{p+1}} .
\end{aligned}
$$

- Stability and convergence not proven for collocation scheme.

Galerkin vs. Collocation: conditioning

Galerkin: mass matrix $M_{G}:=\left[\left(\rho_{j}, \rho_{m}\right)\right]$ has cond $M \leq(1+\sigma) /(1-\sigma)$, where

$$
\sigma \leq \max \left\{\frac{\min \left(y_{j}^{+}, y_{m}^{-}\right)-\max \left(y_{j-1}^{+}, y_{m-1}^{-}\right)}{\sqrt{\left(y_{j}^{+}-y_{j-1}^{+}\right)\left(y_{m}^{-}-y_{m-1}^{-}\right)}}\right\}<1
$$

and if side lengths and angles are equal we can prove

$$
\sigma<\left(\frac{1}{k L}\right)^{1 / 2 N \log k}
$$

Collocation: difficulty with choice of collocation points, $M_{C}:=\left[\rho_{j}\left(s_{m}\right)\right]$ may be ill conditioned.

Galerkin vs. Collocation: implementation

Galerkin: need to evaluate numerically many integrals of form

$$
\int_{-b}^{-a} \int_{c}^{d}\left[H_{0}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)+\frac{\mathrm{i} t H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}}\right] \mathrm{e}^{\mathrm{i} k\left(\sigma_{j} t-\sigma_{m} s\right)} \mathrm{d} t \mathrm{~d} s
$$

Collocation: need to evaluate numerically many integrals of form

$$
\int_{a}^{b}\left[H_{0}^{(1)}\left(k \sqrt{s_{m}^{2}+t^{2}}\right)+\frac{\mathrm{i} t H_{1}^{(1)}\left(k \sqrt{s_{m}^{2}+t^{2}}\right)}{\sqrt{s_{m}^{2}+t^{2}}}\right] \mathrm{e}^{\mathrm{i} k \sigma_{j} t} \mathrm{~d} t
$$

- Collocation method easier to implement

Numerical results
scattering by a square, $k=5$
scattering by a square, $k=10$

Numerical results (scattering by a square)

Solution minus P.O. approximation;

Numerical results (scattering by a square)

Solution minus P.O. approximation;

Numerical results (scattering by a square)

Solution minus P.O. approximation;

Numerical results (scattering by a square)

Solution minus P.O. approximation;

Numerical results (scattering by a square)

Solution minus P.O. approximation;

Numerical results (scattering by a square)

Solution minus P.O. approximation;

Numerical results (scattering by a square)

Solution minus P.O. approximation;

Numerical results (scattering by a square)
"Exact" solution minus P.O. approximation, $k=5$;

Numerical results (scattering by a square)
"Exact" solution minus P.O. approximation, $k=10$;

Numerical results (scattering by a square)
"Exact" solution minus P.O. approximation, $k=20$;

Numerical results (scattering by a square)
"Exact" solution minus P.O. approximation, $k=40$;

Table 1: Relative errors, $k=10$

k	N	dof	$\frac{\left\\|\varphi-\varphi_{N_{G}}\right\\|_{2}}{\\|\varphi\\|_{2}}$	$\frac{\left\\|\varphi-\varphi_{N_{C}}\right\\|_{2}}{\\|\varphi\\|_{2}}$
10	2	24	$1.1691 \times 10^{+0}$	7.5453×10^{-1}
	4	48	4.3784×10^{-1}	4.7335×10^{-1}
	8	96	2.2320×10^{-1}	2.6980×10^{-1}
	16	192	1.2106×10^{-1}	1.2670×10^{-1}
32	376	1.1633×10^{-1}	6.8440×10^{-2}	
	64	752	2.8702×10^{-2}	3.3034×10^{-2}

Table 2: Relative errors, $k=160$

k	N	dof	$\frac{\left\\|\varphi-\varphi_{N_{G}}\right\\|_{2}}{\\|\varphi\\|_{2}}$	$\frac{\left\\|\varphi-\varphi_{N_{C}}\right\\|_{2}}{\\|\varphi\\|_{2}}$
160	2	32	7.2765×10^{-1}	6.8901×10^{-1}
	4	56	4.2628×10^{-1}	4.4455×10^{-1}
	8	112	4.9060×10^{-1}	4.6445×10^{-1}
16	224	1.2847×10^{-1}	2.3456×10^{-1}	
32	456	8.4578×10^{-2}	9.3327×10^{-2}	
	64	904	3.4570×10^{-2}	4.8153×10^{-2}

k	M_{N}	$\left\\|\varphi-\varphi_{N}\right\\|_{2}$	$\left\\|\varphi-\varphi_{N}\right\\|_{2} /\\|\varphi\\|_{2}$	COND
5	360	3.6171×10^{-1}	6.8909×10^{-2}	2.6×10^{1}
10	376	8.5073×10^{-1}	1.1633×10^{-1}	1.8×10^{2}
20	392	8.0941×10^{-1}	7.9909×10^{-2}	1.0×10^{3}
40	416	1.1252×10^{0}	8.0909×10^{-2}	2.4×10^{2}
80	432	1.6630×10^{0}	8.7071×10^{-2}	5.9×10^{2}
160	456	2.1936×10^{0}	8.4578×10^{-2}	5.2×10^{2}
320	472	3.5185×10^{0}	1.0211×10^{-1}	8.1×10^{2}

Table 3: Relative L_{2} errors, various $k, N=32$

k	N	$\left\|\frac{u_{N}-u_{256}}{u_{256}}(-\pi, 3 \pi)\right\|$	$\left\|\frac{u_{N}-u_{256}}{u_{256}}(3 \pi, 3 \pi)\right\|$	$\left\|\frac{u_{N}-u_{256}}{u_{256}}(3 \pi,-\pi)\right\|$
5	4	1.9588×10^{-2}	1.0071×10^{-3}	1.5885×10^{-2}
	8	4.2631×10^{-3}	2.8032×10^{-3}	2.3213×10^{-3}
	16	3.6178×10^{-4}	3.1438×10^{-4}	1.3514×10^{-3}
	32	6.6463×10^{-5}	2.9271×10^{-5}	1.7115×10^{-5}
	64	1.1634×10^{-5}	5.4525×10^{-6}	3.8267×10^{-6}

Table 4: Relative errors, for $u_{N}(x)$

k	N	$\left\|\frac{u_{N}-u_{256}}{u_{256}}(-\pi, 3 \pi)\right\|$	$\left\|\frac{u_{N}-u_{256}}{u_{256}}(3 \pi, 3 \pi)\right\|$	$\left\|\frac{u_{N}-u_{256}}{u_{256}}(3 \pi,-\pi)\right\|$
320	4	7.2339×10^{-6}	9.1702×10^{-6}	6.5155×10^{-5}
	8	1.3617×10^{-5}	4.7357×10^{-6}	3.6329×10^{-5}
	16	1.0694×10^{-5}	3.0122×10^{-6}	2.9284×10^{-5}
	32	1.0691×10^{-6}	5.3066×10^{-7}	2.8225×10^{-6}
	64	3.1606×10^{-7}	3.0148×10^{-7}	8.1702×10^{-7}

Table 5: Relative errors, for $u_{N}(x)$

What we actually are computing ...

The difference between the exact solution and a leading order approximation;

Figure 4: square, $k=5$

What we actually are computing ...

The difference between the exact solution and a leading order approximation;

Figure 5: square, $k=10$

What we actually are computing ...

The difference between the exact solution and a leading order approximation;

Figure 6: square, $k=20$

What we actually are computing ...

The difference between the exact solution and a leading order approximation;

Figure 7: square, $k=40$

Summary and Conclusions

- Using Green's representation theorem in a half-plane we can understand behaviour of the field on the boundary and its derivatives for scattering by a convex polygon (extends to convex polyhedron in 3D)
- For a convex polygon, design of an optimal graded mesh for piecewise polynomial approximation is then straightforward
- The number of degrees of freedom need only grow logarithmically with the wavenumber to maintain a fixed accuracy
- Ongoing considerations
- Galerkin vs. Collocation - stability and convergence analysis
- Better schemes for evaluating oscillatory integrals
- $h p$ ideas

