Computing High Frequency Waves By the Level Set Method

Hailiang Liu

Department of Mathematics Iowa State University

Collaborators: Li-Tien Cheng (UCSD), Stanley Osher (UCLA) Shi Jin (UW-Madison), Richard Tsai (TX-Austin)

CSCAMM Workshop on High Frequency Wave Propagation

University of Maryland, September 19-22, 2005

Semiclassical limit of Schrödinger equation

Level set approach for Hamilton-Jacobi equations From the transport equation of WKB system From the limit Wigner equation A show case of numerical tests

Semiclassical limit of Schrödinger equation

- 2 Level set approach for Hamilton-Jacobi equations
- 3 From the transport equation of WKB system
- 4 From the limit Wigner equation
- 5 A show case of numerical tests

イロト イポト イヨト イヨト

High Frequency Wave Propagation

O Background:

- Computation of Semiclassical limit of Schrödinger equation
- Computation of high frequency waves applied to: geometrical optics, seismology, medical imaging, ...
- Math Theory: semiclassical analysis, Lagrangian path integral, wave dynamics in nonlinear PDEs ...
- Computing Observables
 - Asymptotic methods: WKB method and/or Wigner transform method
 - Level set method in an augmented space
 - Projection + Postprocessing

(日) (周) (王) (王)

Dispersive wave equation

• The Schrödinger equation

$$i\epsilon\partial_t u^\epsilon = -rac{\epsilon^2}{2}\Delta_x u^\epsilon + V(x)u^\epsilon, \quad u_0(x) = A(x)e^{iS_0(x)/\epsilon}.$$

- Semiclassical limit $\epsilon \rightarrow 0$: the transition from quantum mechanics to classical mechanics
- Direct computation becomes unrealistic.

・ロト ・ 同ト ・ ヨト ・ ヨト

The Madelung Equations

- Madelung Transformation (1926) $u^{\epsilon} = A e^{iS/\epsilon}$
- Insertion into the Schrödinger equation, and separate into real and imaginary parts

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0, \quad \mathbf{v} = \nabla S, \rho = A^2,$$

 $\partial_t S + \frac{1}{2} |\nabla_x S|^2 + \mathbf{V} + U = 0$

• Quantum-mechanical potential $U = -\frac{\epsilon^2}{2\sqrt{\rho}}\Delta\sqrt{\rho}$.

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla_{\mathbf{x}} \mathbf{v} = -\nabla \mathbf{V} - \nabla U(\rho).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Recovering Schrödinger from the Madelung Equations

- v must be a gradient of S;
- we must allow S to be a multi-valued function, otherwise a singularity would appear in

$$\nabla_{\mathsf{x}} u^{\epsilon} = (\nabla A/A + i\nabla S/\epsilon) u^{\epsilon}$$

• (enforce quantization) In order for the wave equation to remain single valued, one needs to impose

$$\int_L \mathbf{v} \cdot d\mathbf{l} = 2\pi j, \quad j \in Z.$$

-phase shift, Keller-Maslov index.

< ロト (周) (日) (日)

Uncertainty Principle

 The principle of symplectic camel Consider phase space ball B(R) := {(x, p) : |x|² + |p|² ≤ R²} and 'symplectic cylinder'

$$Z_j(r): \{(x,p): x_j^2 + p_j^2 \leq r^2\}.$$

• Non-squeezing theorem (Gromov 1985): Let *f* be a symplectomorphism, then

$$f(B(R)) \subset Z_j(r) \Leftrightarrow R \leq r.$$

 Quantum cells ↔ Keller-Maslov quantization of Lagrangian manifolds. ...

イロト イヨト イヨト イヨト

The Wigner equation

• Wigner Transform (1932)

$$w^{\epsilon}(t,x,k) = \left(\frac{1}{2\pi}\right)^{d/2} \int e^{-ik \cdot y} u^{\epsilon}(t,x-\epsilon y/2) \bar{u}^{\epsilon}(x+\epsilon y/2) \, dy.$$

• The Wigner equation as $\epsilon \to 0$ becomes

$$\partial_t w + k \cdot \nabla_x w - \nabla_x V w = 0.$$

• for WKB data $u_0^\epsilon = \sqrt{
ho_0(x)} e^{iS_0(x)/\epsilon}$:

$$w(0,x,k) = \rho_0(x)\delta(k - \nabla_x S_0(x)).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Two paths to follow

- Goal: design efficient numerical methods to compute multi-valued geometric observables (phase, phase gradient) and physical observables (density, momentum, energy) for semiclassical limit.
- Two approximations for wave field u^ε
 (1) Position density + phase, u = Ae^{iS/ε}, WKB method → Hamilton–Jacobi + transport equation
 (2)A probability distribution, f(t, x, ξ), Wigner transform → Wigner equation + singular data;

(日) (同) (目) (日) (日)

Applied to other wave equations

• Hyperbolic waves —Basic wave equation

$$\partial_t^2 u = c(x)^2 \Delta u, \quad u(t,x) = A e^{i\omega S}, \quad \omega >> 1.$$

• Symmetric hyperbolic systems of the form

$$A(x)\frac{\partial \mathbf{u}_{\epsilon}}{\partial t} + \sum_{j=1}^{n} D^{j} \frac{\partial \mathbf{u}_{\epsilon}}{\partial x^{j}} = 0.$$
 (1)

where $\mathbf{u}_{\epsilon} \in C^M$ is a complex valued vector and $\mathbf{x} \in R^d$.

• Examples include: acoustic wave equations, Maxwell equation, equations of linear elasticity.

WKB approach \Rightarrow the WKB system

For a smooth nonlinear Hamiltonian H(x, k) : Rⁿ × Rⁿ → R¹, the WKB method typically results in a weakly coupled system of an eikonal equation for phase S and a transport equation for position density ρ = |A|² respectively:

$$\partial_t S + H(\mathbf{x}, \nabla S) = 0, \quad (t, \mathbf{x}) \in R^+ \times R^n, \qquad (2)$$

$$\partial_t \rho + \nabla_{\mathbf{x}} \cdot (\rho \nabla_{\mathbf{k}} H(\mathbf{x}, \nabla_{\mathbf{x}} S)) = 0. \qquad (3)$$

- Two canonical examples: the semiclassical limit of the Schrödinger equations $(H = \frac{1}{2}|\mathbf{k}|^2 + V(\mathbf{x}))$ and geometrical optics limit of the wave equations $(H = c(\mathbf{x})|\mathbf{k}|)$.
- Advantage and disadvantage: ε-free, superposition principle lost ...

WKB approach \Rightarrow the WKB system

For a smooth nonlinear Hamiltonian H(x, k) : Rⁿ × Rⁿ → R¹, the WKB method typically results in a weakly coupled system of an eikonal equation for phase S and a transport equation for position density ρ = |A|² respectively:

$$\partial_t S + H(\mathbf{x}, \nabla S) = 0, \quad (t, \mathbf{x}) \in \mathbb{R}^+ \times \mathbb{R}^n,$$
 (2)

$$\partial_t \rho + \nabla_{\mathbf{x}} \cdot (\rho \nabla_{\mathbf{k}} H(\mathbf{x}, \nabla_{\mathbf{x}} S)) = 0.$$
(3)

- Two canonical examples: the semiclassical limit of the Schrödinger equations $(H = \frac{1}{2}|\mathbf{k}|^2 + V(\mathbf{x}))$ and geometrical optics limit of the wave equations $(H = c(\mathbf{x})|\mathbf{k}|)$.
- Advantage and disadvantage: ε-free, superposition principle lost ...

WKB approach \Rightarrow the WKB system

For a smooth nonlinear Hamiltonian H(x, k) : Rⁿ × Rⁿ → R¹, the WKB method typically results in a weakly coupled system of an eikonal equation for phase S and a transport equation for position density ρ = |A|² respectively:

$$\partial_t S + H(\mathbf{x}, \nabla S) = 0, \quad (t, \mathbf{x}) \in \mathbb{R}^+ \times \mathbb{R}^n,$$
 (2)

$$\partial_t \rho + \nabla_{\mathbf{x}} \cdot (\rho \nabla_{\mathbf{k}} H(\mathbf{x}, \nabla_{\mathbf{x}} S)) = 0.$$
(3)

- Two canonical examples: the semiclassical limit of the Schrödinger equations $(H = \frac{1}{2}|\mathbf{k}|^2 + V(\mathbf{x}))$ and geometrical optics limit of the wave equations $(H = c(\mathbf{x})|\mathbf{k}|)$.
- Advantage and disadvantage: *e*-free, superposition principle lost ...

Known Methods? surveyed by Engquist and Runborg

- Ray tracing (rays, characteristics), ODE based;
- Hamilton-Jacobi Methods—nonlinear PDE based [Fatemi, Engquist, Osher, Benamou, Abgrall, Symes, Qian ...]

• Kinetic Methods — linear PDE based

(i)Wave front methods:

[Engquist, Tornberg, Runborg, Formel, Sethian,

Osher-Cheng-Kang-Shim and Tsai ...]

(ii) Moment closure methods:

[Brenier, Corrias, Engquist, Runborg, Gosse, Jin-Li, Gosse-Jin-Li...]

Level set method ...

· 曰 › · (司 › · (글 › · (글 › ·) 글

Outline

Semiclassical limit of Schrödinger equation

- 2 Level set approach for Hamilton-Jacobi equations
- Is a stant of the second se
- I From the limit Wigner equation
- 5 A show case of numerical tests

イロト イポト イヨト イヨト

Capturing multi-valued solutions

1-D Burgers' equation

$$\partial_t u + u \partial_x u = 0, \quad u(x,0) = u_0(x).$$

Characteristic method gives $u = u_0(\alpha)$, $X = \alpha + u_0(\alpha)t$

- In physical space (t, x): $u(t, x) = u_0(x u(t, x)t)$.
- In the space (t, x, y) (graph evolution)

$$\phi(t,x,y)=0, \quad \phi(t,x,y)=y-u_0(x-yt),$$

with $\phi(t, x, y)$ satisfying

$$\partial_t \phi + y \partial_x \phi = 0, \quad \phi(0, x, y) = y - u_0(x).$$

Giga, Osher and Tsai (2002), for capturing entropy solution

Multi-valued phase (Cheng, Liu and S. Osher (03))

Jet Space Method Consider the HJ equation

$$\partial_t S + H(x, \nabla_x S) = 0, \quad H(x, k) = \frac{1}{2} |k|^2 + V(x).$$

For this equation the graph evolution is not enough to unfold the singularity since H is also nonlinear in $\nabla_x S$.

Therefore we choose

- to work in the Jet space (x, k, z) with z = S(x, t) and $k = \nabla_x S$;
- to select and evolve an implicit representative of the solution manifold.

< ロ > (四 > (三 > (三 >)))

Multi-valued phase and velocity

• Characteristic equation: In the jet space (x, k, z) the HJ equation is governed by ODEs

$$\begin{aligned} \frac{dx}{dt} &= \nabla_k H(x,k), \quad x(0,\alpha) = \alpha, \\ \frac{dk}{dt} &= -\nabla_x H(x,k), \quad k(0,\alpha) = \nabla_x S_0(\alpha), \\ \frac{dz}{dt} &= k \cdot \nabla H_k(x,k) - H(x,k), \quad z(0,\alpha) = S_0(\alpha). \end{aligned}$$

- level set function \simeq global invariants of the above ODEs.
- level set equation We introduce a level set function $\phi = \phi(t, x, k, z)$ so that the graph z = S can be realized as a zero level set

$$\phi(t, x, k, z) = 0, \quad z = S(t, x, k),$$

$$\partial_t \phi + (\nabla_k H, \quad -\nabla_x H, \quad k \cdot \nabla_k H - H)^\top \cdot \nabla_{\{x, k, z\}} \phi = 0.$$

Multi-valued velocity—Phase space method

• Hamitonian dynamics: If we just want to capture the velocity $k = \nabla_x S$ or to track the wave front, *z* direction is unnecessary.

$$\begin{aligned} \frac{dx}{dt} &= \nabla_k H(x,k), \quad x(0,\alpha) = \alpha, \\ \frac{dk}{dt} &= -\nabla_x H(x,k), \quad k(0,\alpha) = \nabla_x S_0(\alpha). \end{aligned}$$

Liouville equation

$$\partial_t \phi + \nabla_k H(x,k) \cdot \partial_x \phi - \nabla_x H(x,k) \cdot \nabla_k \phi = 0, \quad \phi \in \mathbb{R}^n.$$

Note here ϕ is a geometric object — level set function, instead of the distribution function.

• Independent work by S. Jin & S. Osher (03').

1st-order nonlinear PDEs (Liu, Cheng and Osher (04))

Consider $F(x, u, u_x) = 0$. In the jet space (x, z, p) with z = u and $p = u_x$, the equation becomes a manifold

$$F(x,z,p)=0.$$

Let its integral manifold be denoted by a zero set of a vector valued function $\phi = \phi(x, p, z)$, then the function ϕ is transported by the characteristic flow

$$L\phi = 0$$

with the characteristic field defined by

$$L := \nabla_p F \cdot \nabla_x + p \cdot \nabla_p F \partial_z - (\nabla_x F + p \partial_z F) \cdot \nabla_p.$$

(日) (同) (三) (三) (三)

Remarks

- Reduction to lower dimension space whenever possible [say, jet space to phase space];
- Number of level set functions= m k, m = reduced space dimension, k = dimension of domain to be simulated [whole domain k = d, or wave front k = d - 1];
- Choice of initial data is not unique, but the zero level set should uniquely embed the given initial data.

(日) (周) (王) (王)

Outline

- Semiclassical limit of Schrödinger equation
- 2 Level set approach for Hamilton-Jacobi equations
- From the transport equation of WKB system
- I From the limit Wigner equation
- 5 A show case of numerical tests

イロト イポト イヨト イヨト

Evaluation of density (Jin, Liu, Osher and Tsai, JCP04)

- For semiclassical limit of the Schrödinger equation $H = |k|^2/2 + V(x).$
- we evaluate the multi-valued density in the physical space by projecting its value in phase space (x, k) onto the manifold \$\phi\$ = 0, i.e., for any \$\times\$ we compute

$$ar{
ho}(\mathbf{x},t) = \int \widetilde{
ho}(t,\mathbf{x},\mathbf{k}) |J(t,\mathbf{x},\mathbf{k})| \delta(\phi) d\mathbf{k},$$

where $J := \det(\nabla_{\mathbf{k}}\phi) = \det(Q)$.

• A new quantity $f(t, \mathbf{x}, \mathbf{k}) := \tilde{\rho}(t, \mathbf{x}, \mathbf{k}) |J(t, \mathbf{x}, \mathbf{k})|$ also solves the Liouville equation

$$\partial_t f + k \cdot \nabla_{\mathbf{x}} f - \nabla_{\mathbf{x}} V(x) \cdot \nabla_{\mathbf{k}} f = 0, \quad f_0 = \rho_0.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Evaluation of density (Jin, Liu, Osher and Tsai, JCP04)

- For semiclassical limit of the Schrödinger equation $H = |k|^2/2 + V(x)$.
- we evaluate the multi-valued density in the physical space by projecting its value in phase space (x, k) onto the manifold φ = 0, i.e., for any x we compute

$$ar{
ho}({\sf x},t)=\int \widetilde{
ho}(t,{\sf x},{\sf k})|J(t,{\sf x},{\sf k})|\delta(\phi)d{\sf k},$$

where $J := \det(\nabla_{\mathbf{k}} \phi) = \det(Q)$.

• A new quantity $f(t, \mathbf{x}, \mathbf{k}) := \tilde{\rho}(t, \mathbf{x}, \mathbf{k}) |J(t, \mathbf{x}, \mathbf{k})|$ also solves the Liouville equation

$$\partial_t f + k \cdot \nabla_{\mathbf{x}} f - \nabla_{\mathbf{x}} V(x) \cdot \nabla_{\mathbf{k}} f = 0, \quad f_0 = \rho_0.$$

Evaluation of density (Jin, Liu, Osher and Tsai, JCP04)

- For semiclassical limit of the Schrödinger equation $H = |k|^2/2 + V(x)$.
- we evaluate the multi-valued density in the physical space by projecting its value in phase space (x, k) onto the manifold φ = 0, i.e., for any x we compute

$$ar{
ho}({f x},t)=\int ilde{
ho}(t,{f x},{f k})|J(t,{f x},{f k})|\delta(\phi)d{f k},$$

where $J := \det(\nabla_{\mathbf{k}} \phi) = \det(Q)$.

• A new quantity $f(t, \mathbf{x}, \mathbf{k}) := \tilde{\rho}(t, \mathbf{x}, \mathbf{k}) |J(t, \mathbf{x}, \mathbf{k})|$ also solves the Liouville equation

$$\partial_t f + k \cdot \nabla_{\mathbf{x}} f - \nabla_{\mathbf{x}} V(x) \cdot \nabla_{\mathbf{k}} f = 0, \quad f_0 = \rho_0.$$

General Hamiltonian(Jin, Liu, Osher and Tsai, JCP05)

• In the physical space the density equation is

$$\partial_t \rho + \nabla_{\mathbf{k}} H \cdot \nabla_{\mathbf{x}} \rho = -\rho G$$

where $G := \nabla_{\mathbf{x}} \cdot \nabla_{\mathbf{k}} H(\mathbf{x}, \mathbf{k}), \quad \mathbf{k} = \nabla_{\mathbf{x}} S(t, \mathbf{x}) = \mathbf{v}(t, \mathbf{x}).$

• Lift to phase space (x, k): Let $\tilde{\rho}(t, \mathbf{x}, \mathbf{k})$ be a representative of $\rho(t, \mathbf{x})$ in the phase space such that $\tilde{\rho}(t, \mathbf{x}, \mathbf{v}(t, \mathbf{x})) = \rho(t, \mathbf{x})$. Then

$$L\tilde{
ho}(t,\mathbf{x},\mathbf{k})=-\tilde{
ho}G$$

and

$$L(J) = JG$$

where the Liouville operator:

$$L := \partial_t + \nabla_k H \cdot \nabla_x - \nabla_x H \cdot \nabla_k$$

< ロト (周) (日) (日)

General Hamiltonian(Jin, Liu, Osher and Tsai, JCP05)

• In the physical space the density equation is

$$\partial_t \rho + \nabla_{\mathbf{k}} H \cdot \nabla_{\mathbf{x}} \rho = -\rho G$$

where $G := \nabla_{\mathbf{x}} \cdot \nabla_{\mathbf{k}} H(\mathbf{x}, \mathbf{k}), \quad \mathbf{k} = \nabla_{\mathbf{x}} S(t, \mathbf{x}) = \mathbf{v}(t, \mathbf{x}).$

• Lift to phase space (x, k): Let $\tilde{\rho}(t, \mathbf{x}, \mathbf{k})$ be a representative of $\rho(t, \mathbf{x})$ in the phase space such that $\tilde{\rho}(t, \mathbf{x}, \mathbf{v}(t, \mathbf{x})) = \rho(t, \mathbf{x})$. Then

$$L\widetilde{
ho}(t,\mathbf{x},\mathbf{k})=-\widetilde{
ho}G$$

and

$$L(J) = JG$$

where the Liouville operator:

$$L := \partial_t + \nabla_{\mathbf{k}} H \cdot \nabla_{\mathbf{x}} - \nabla_{\mathbf{x}} H \cdot \nabla_{\mathbf{k}}.$$

< ロト (周) (日) (日)

A new quantity f

$$f(t, \mathbf{x}, \mathbf{k}) := ilde{
ho}(t, \mathbf{x}, \mathbf{k}) |J(t, \mathbf{x}, \mathbf{k})|$$

indeed solves the Liouville equation

$$\partial_t f + \nabla_{\mathbf{k}} H \cdot \nabla_{\mathbf{x}} f - \nabla_{\mathbf{x}} H \cdot \nabla_{\mathbf{k}} f = 0, \quad f_0 = \rho_0 |J_0|.$$

• Here f is similar to, but different from

$$\rho(t, x) \det\left(\frac{\partial X}{\partial \alpha}\right),$$

which remains unchanged along the ray in physical space, det $\left(\frac{\partial X}{\partial \alpha}\right)$ called 'geometrical divergence'

Post-processing

The combination of the vector level set function ϕ and the function f enables us to compute the desired physical observables, for example, density and the velocity via integrations against a delta function

$$ar{
ho}(x,t) = \int f(t,x,k) \delta(\phi) dk, \ ar{u}(x,t) = \int k f(t,x,k) \delta(\phi) dk / ar{
ho}$$

 $\delta(\phi) := \prod_{j=1}^{n} \delta(\phi_j)$ with ϕ_j being the *j*-th component of ϕ .

O(nlogn) minimal effort, local level set method.

(D) (A) (A)

Application I: Scalar wave equation

• Wave equation:

$$\partial_t^2 u - c^2(\mathbf{x})\Delta u = 0, \quad (t, \mathbf{x}) \in \mathcal{R}^+ \times \mathcal{R}^n,$$

where $c(\mathbf{x})$ is the local wave speed of medium.

- Eikonal equation: $\partial_t S + c(\mathbf{x}) |\nabla_{\mathbf{x}} S| = 0.$
- Amplitude equation:

$$\partial_t A_0 + c(\mathbf{x}) \frac{\nabla_{\mathbf{x}} S \cdot \nabla_{\mathbf{x}} A_0}{|\nabla_{\mathbf{x}} S|} + \frac{c^2 \Delta S - \partial_t^2 S}{2c |\nabla_{\mathbf{x}} S|} A_0 = 0.$$

• $\partial_t A_0^2 + c^2 \nabla_{\mathbf{x}} \cdot \left(A_0^2 \frac{\nabla_{\mathbf{x}} S}{c(\mathbf{x}) |\nabla_{\mathbf{x}} S|} \right) = 0.$ This suggests that for $H(\mathbf{x}, \mathbf{k}) = c(\mathbf{x}) |\mathbf{k}|, \ \rho = A_0^2 / c^2$ solves

 $\partial_t \rho + \nabla_{\mathbf{x}} \cdot (\rho \nabla_{\mathbf{k}} H(\mathbf{x}, \nabla_{\mathbf{x}} S)) = 0.$

Application I: Scalar wave equation

• Wave equation:

$$\partial_t^2 u - c^2(\mathbf{x})\Delta u = 0, \quad (t, \mathbf{x}) \in \mathcal{R}^+ \times \mathcal{R}^n,$$

where $c(\mathbf{x})$ is the local wave speed of medium.

- Eikonal equation: $\partial_t S + c(\mathbf{x}) |\nabla_{\mathbf{x}} S| = 0.$
- Amplitude equation:

$$\partial_t A_0 + c(\mathbf{x}) rac{
abla_{\mathbf{x}} S \cdot
abla_{\mathbf{x}} A_0}{|
abla_{\mathbf{x}} S|} + rac{c^2 \Delta S - \partial_t^2 S}{2c |
abla_{\mathbf{x}} S|} A_0 = 0.$$

• $\partial_t A_0^2 + c^2 \nabla_{\mathbf{x}} \cdot \left(A_0^2 \frac{\nabla_{\mathbf{x}} S}{c(\mathbf{x}) |\nabla_{\mathbf{x}} S|} \right) = 0.$ This suggests that for $H(\mathbf{x}, \mathbf{k}) = c(\mathbf{x}) |\mathbf{k}|$, $\rho = A_0^2 / c^2$ solves

$$\partial_t \rho + \nabla_{\mathbf{x}} \cdot (\rho \nabla_{\mathbf{k}} H(\mathbf{x}, \nabla_{\mathbf{x}} S)) = 0.$$

< ロト (周) (日) (日)

Application II: Acoustic waves

۲

$$\rho(\mathbf{x})\partial_t \mathbf{v} + \nabla_{\mathbf{x}} \boldsymbol{p} = \mathbf{0}, \quad \kappa(\mathbf{x})\partial_t \boldsymbol{p} + \nabla_{\mathbf{x}} \cdot \mathbf{v} = \mathbf{0}.$$

Here $\rho =$ density and $\kappa =$ compressibility. With oscillatory initial data $\mathbf{u}(0, \mathbf{x}) = \mathbf{u}_0(\mathbf{x}) \exp(iS_0(\mathbf{x})/\epsilon)$ where $\mathbf{u} = (\mathbf{v}, p)$ and S_0 is the initial phase function. Seeking WKB asymptotic solution

$$\mathbf{u}(t, \mathbf{x}) = A(t, \mathbf{x}, \epsilon) \exp(iS(t, \mathbf{x})/\epsilon).$$

• There are four wave modes:

 $H(\mathbf{x}, \mathbf{k}) = \{0, 0, v(x) |\mathbf{k}|, -v(x) |\mathbf{k}|\} =$ transverse waves (no propagation) + acoustic waves (longitudinal, propagate with sound speed $v = 1/\sqrt{k(x)\rho(x)}$).

(日) (周) (王) (王)

Application II: Acoustic waves

۲

$$\rho(\mathbf{x})\partial_t \mathbf{v} + \nabla_{\mathbf{x}} \boldsymbol{p} = \mathbf{0}, \quad \kappa(\mathbf{x})\partial_t \boldsymbol{p} + \nabla_{\mathbf{x}} \cdot \mathbf{v} = \mathbf{0}.$$

Here $\rho =$ density and $\kappa =$ compressibility. With oscillatory initial data $\mathbf{u}(0, \mathbf{x}) = \mathbf{u}_0(\mathbf{x}) \exp(iS_0(\mathbf{x})/\epsilon)$ where $\mathbf{u} = (\mathbf{v}, p)$ and S_0 is the initial phase function. Seeking WKB asymptotic solution

$$\mathbf{u}(t,\mathbf{x}) = A(t,\mathbf{x},\epsilon) \exp(iS(t,\mathbf{x})/\epsilon).$$

There are four wave modes:

 $H(\mathbf{x}, \mathbf{k}) = \{0, 0, v(x) |\mathbf{k}|, -v(x) |\mathbf{k}|\} =$ transverse waves (no propagation) + acoustic waves (longitudinal, propagate with sound speed $v = 1/\sqrt{k(x)\rho(x)}$).

イロト イポト イヨト イヨト

• Let $\hat{k} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$, the vector

$$\mathbf{b}^+(\mathbf{x},\hat{k}) := \left(rac{\hat{k}}{\sqrt{2
ho}},rac{1}{\sqrt{2\kappa}}
ight),$$

and define an amplitude function $\mathcal A$ in the direction of $\mathbf b^+$ as

$$u_0(\mathbf{x}) = \mathcal{A}(0, x)(\mathbf{x})\mathbf{b}^+(\mathbf{x}, \nabla_{\mathbf{x}}S_0).$$

• The nonnegative function $\eta = |\mathcal{A}|^2(t,x)$ satisfies

$$\partial_t \eta + \nabla_{\mathbf{x}} \cdot (\eta \nabla_k H(\mathbf{x}, \nabla_{\mathbf{x}} S)) = 0$$

coupled with the eikonal equation

$$\partial_t S + H(\mathbf{x}, \nabla_{\mathbf{x}} S) = 0, \quad H(x, \mathbf{k}) = v(x)|\mathbf{k}|.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

• Let $\hat{k} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$, the vector

$$\mathbf{b}^+(\mathbf{x},\hat{k}):=\left(rac{\hat{k}}{\sqrt{2
ho}},rac{1}{\sqrt{2\kappa}}
ight),$$

and define an amplitude function $\mathcal A$ in the direction of $\mathbf b^+$ as

$$u_0(\mathbf{x}) = \mathcal{A}(0, x)(\mathbf{x})\mathbf{b}^+(\mathbf{x}, \nabla_{\mathbf{x}}S_0).$$

• The nonnegative function $\eta = |\mathcal{A}|^2(t,x)$ satisfies

$$\partial_t \eta + \nabla_{\mathbf{x}} \cdot (\eta \nabla_k H(\mathbf{x}, \nabla_{\mathbf{x}} S)) = 0$$

coupled with the eikonal equation

$$\partial_t S + H(\mathbf{x}, \nabla_{\mathbf{x}} S) = 0, \quad H(x, \mathbf{k}) = v(x)|\mathbf{k}|.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

- Semiclassical limit of Schrödinger equation
- 2 Level set approach for Hamilton-Jacobi equations
- From the transport equation of WKB system
- 4 From the limit Wigner equation
- 5 A show case of numerical tests

Wigner approach

The limiting Wigner function w(t, x, k) solves the Liouville equation

$$\partial_t w + \nabla_p H \cdot \nabla_x w - \nabla_x H \cdot \nabla_k w = 0.$$

$$w(0,x,k) = \rho_0(x)\delta(k - \nabla S_0(x))$$

• How to link this to the WKB approach?

・ロト ・ 同ト ・ ヨト ・ ヨト

Building 'level set devices' into the Wigner equation

Level set formulation

$$\partial_t \phi + \nabla_k H(x, p) \cdot \nabla_x \phi - \nabla_x H(x, p) \cdot \nabla_k \phi = 0,$$

 $\phi(0, x, k) = \phi_0(x),$

, where $\phi_0 = k - \nabla_x S_0$ for smooth S_0 .

• the bounded quantity f

$$\partial_t f + \nabla_k H(x,k) \cdot \nabla_x f - \nabla_x H(x,k) \cdot \nabla_k f = 0,$$

 $f(0,x,k) = \rho_0(x).$

• Let $\phi = (\phi^1, \cdots, \phi^n)^{\top}$. The solution is given by

$$w(t,x,k) = f(t,x,k)\delta(\phi(t,\mathbf{x},\mathbf{k})).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

- Semiclassical limit of Schrödinger equation
- 2 Level set approach for Hamilton-Jacobi equations
- Is a state of the second state of the secon
- From the limit Wigner equation
- 5 A show case of numerical tests

1D Self-crossing wave fronts

H. Liu, Iowa State University

Computing High Frequency Waves By the Level Set Method

Wave Guide

H. Liu, Iowa State University Computing High Frequency Waves By the Level Set Method

・ロン ・四マ ・ヨン ・ヨン

Contracting ellipse in 2D

H. Liu, Iowa State University Computing High Frequency Waves By the Level Set Method

(日) (部) (注) (注)

Contracting ellipse in 2D

H. Liu, Iowa State University Computing High Frequency Waves By the Level Set Method

(日) (部) (注) (注)

Concluding remarks

⊗ Summary

- The phase space based method introduced may be regarded as a compromise between *ray tracing* and the *kinetic method*, and the jet space method is for computing the multi-valued phase.
- The evaluation of density and high moments is performed by a post-processing step.
- The techniques discussed here are naturally geometrical and well suited for handling multi-valued solutions, arising in a large class of problems.

 \bigotimes Future work: nonlinear dispersive waves equations; handling wave scattering; recovering the radiation loss ...

イロト イポト イヨト イヨト