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Computational Acoustics Examples [Huttunen]

0.5

1

1.5

y (mm)

x 
(m

m
)

θ = 10

10 20 30 40 50 60 70 80 90 100

−20

−10

0

10

20

−0.2 −0.1 0 0.1 0.2 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

Monk, Huttunen The UWVF in Scattering



Introduction
Derivation of the UWVF

Numerical Results
Concluding remarks

Acoustic Problems
The Helmholtz Equation
Decisions, decisions....

Acoustic Scattering

Given the shape and acoustic properties of an ob-
ject, predict how it interacts with acoustic waves at
a single frequency.

Monk, Huttunen The UWVF in Scattering



Introduction
Derivation of the UWVF

Numerical Results
Concluding remarks

Acoustic Problems
The Helmholtz Equation
Decisions, decisions....

Acoustic Scattering

Given the shape and acoustic properties of an ob-
ject, predict how it interacts with acoustic waves at
a single frequency.

Incident

Monk, Huttunen The UWVF in Scattering



Introduction
Derivation of the UWVF

Numerical Results
Concluding remarks

Acoustic Problems
The Helmholtz Equation
Decisions, decisions....

Acoustic Scattering

Given the shape and acoustic properties of an ob-
ject, predict how it interacts with acoustic waves at
a single frequency.

Incident Scattered

Monk, Huttunen The UWVF in Scattering



Introduction
Derivation of the UWVF

Numerical Results
Concluding remarks

Acoustic Problems
The Helmholtz Equation
Decisions, decisions....

Acoustic Scattering

Given the shape and acoustic properties of an ob-
ject, predict how it interacts with acoustic waves at
a single frequency.

Incident Scattered Total

Monk, Huttunen The UWVF in Scattering



Introduction
Derivation of the UWVF

Numerical Results
Concluding remarks

Acoustic Problems
The Helmholtz Equation
Decisions, decisions....

Outline

1 Introduction
Acoustic Problems
The Helmholtz Equation
Decisions, decisions...

2 Derivation of the UWVF
The Mesh and Continuity
Variational Formulation (UWVF)
The discrete UWVF

3 Numerical Results
2D Results and Conditioning
Improving the ABC
Parallelization
FEMLAB and Another Example

Monk, Huttunen The UWVF in Scattering



Introduction
Derivation of the UWVF

Numerical Results
Concluding remarks

Acoustic Problems
The Helmholtz Equation
Decisions, decisions....

Helmholtz Equation

Given a bounded doman Ω the pressure field is
P(x , t) = p(x) exp(iωt) where p satisfies

∇ · ρ−1∇p + κ2ρ−1p = 0 in Ω

where ρ is the density and the wave number (complex!) is given
by κ = ω/c + iα where c is the speed of sound and α is the
absorption coefficient. Boundary condition(

ρ−1 ∂p
∂n

− iσp
)

= Q
(

ρ−1 ∂p
∂n

+ iσp
)

+ g

on the boundary ∂Ω where g is data, |Q| ≤ 1 and σ ∈ R
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A Model Scattering Problem

Let Ω ⊂ R3 (or R2) with disjoint boundaries Γ and Σ.
Approximate u which satisfies

∆u + κ2u = 0 in Ω

u = g on Γ (Q = 1)

∂u
∂ν

− iku = 0 on Σ (Q = 0)

ABC

Scatterer

Ω

Σ

Γ

where g describes the incoming plane wave. The region Ω is
meshed with tetrahedra and the UWVF applied there.
ABC = Absorbing Boundary Condition
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Possible methods

Integral equations. Handle unbounded media, complex
shapes. There are fast solvers but they are difficult to
program and complex for penetrable media, coatings,
narrow objects....
Finite elements. Higher order needed to handle
dispersion and becomes expensive at short wavelength.
Geometry and complex materials handled. Difficult to solve
the linear system and handle unbounded domains.
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The big decision

Motivated by medical ultrasound applications (complex
structure, short wavelength) we decided on the following:

A volume based method (finite element grid)
Special shape functions (“basis functions”) that are
solutions of the Helmholtz equation on each element.
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Methods using special basis functions

Partition of unity finite element method = PUFEM (Babuška
and Melenk 1997, Keller and Giladi 2001, Huttenen,
Gamallo and Astley 2005, Kim et al 2005)
Least squares method (Trefftz, Monk and Wang 1999,
Desmet 2002)
Discontinuous enrichment method (Farhat et al. 2001,
2003, 2005)
Plane wave augmented basis in integral equations (
Darrigrand 2001, Perrey-Debain et al. 2002,
Chandler-Wilde and Langdon 2004/5,...)
Ultra weak variational formulation (Després 1994,
Cessenat and Després 1998)
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The Mesh

Approximate the domain Ω by a tetrahedral finite element mesh
consisting of Nh tetrahedra Ωk , k = 1, · · · , Nh of maximum
diameter h.
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The Mesh

Approximate the domain Ω by a tetrahedral finite element mesh
consisting of Nh tetrahedra Ωk , k = 1, · · · , Nh of maximum
diameter h.
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The Mesh

Approximate the domain Ω by a tetrahedral finite element mesh
consisting of Nh tetrahedra Ωk , k = 1, · · · , Nh of maximum
diameter h.

k,j

Ω j k

j,k

n j

kn
Σ

Σ

Ω

Major restriction: ρ and κ must be piecewise constant and con-
stant on each element.

Monk, Huttunen The UWVF in Scattering



Introduction
Derivation of the UWVF

Numerical Results
Concluding remarks

The Mesh and Continuity
Variational Formulation (UWVF)
The discrete UWVF

Required continuity between elements
Let pk = p|Ωk and pj = p|Ωj then since p is a solution of the
Helmholtz equation

pk = pj and
1
ρk

∂pk

∂nk
= − 1

ρj

∂pj

∂nj
on Σj,k

In the UWVF this is achieved by demanding that Robin (one
way wave equation) data agree on the interfaces, so on Σj,k

1
ρk

∂pk

∂nk
+ iσpk = − 1

ρj

∂pj

∂nj
+ iσpj

1
ρk

∂pk

∂nk
− iσpk = − 1

ρj

∂pj

∂nj
− iσpj

where σ > 0 is a parameter (function) on Σj,k (e.g. σ = <(κ)).
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Variational equations
[Cessent and Després] Let ξk satisfy the adjoint equation

∇ · ρ−1∇ξk + κ2ρ−1ξk = 0 in Ωk
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Variational equations
[Cessent and Després] Let ξk satisfy the adjoint equation

∇ · ρ−1∇ξk + κ2ρ−1ξk = 0 in Ωk

then for σ > 0 (e.g. σ = <(κ))

Z
∂Ωk

1

σ

 
1

ρ

∂p

∂nk
+ iσp

! 
1

ρ

∂ξk

∂nk
+ iσξk

!
ds =

Z
∂Ωk

1

σ

 
1

ρ

∂p

∂nk
− iσp

! 
1

ρ

∂ξk

∂nk
− iσξk

!
ds

−2i
Z

∂Ωk

 
1

ρ

∂p

∂nk
ξk −

1

ρ

∂ξk

∂nk
p

!
ds
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Variational equations
[Cessent and Després] Let ξk satisfy the adjoint equation

∇ · ρ−1∇ξk + κ2ρ−1ξk = 0 in Ωk

by Green’s Theorem

Z
∂Ωk

1

σ

 
1

ρ

∂p

∂nk
+ iσp

! 
1

ρ

∂ξk

∂nk
+ iσξk

!
ds =

Z
∂Ωk

1

σ

 
1

ρ

∂p

∂nk
− iσp

! 
1

ρ

∂ξk

∂nk
− iσξk

!
ds

−2i
Z

Ωk

 
∇ ·

1

ρ
∇p ξk −∇ ·

1

ρ
∇ξk p

!
dV
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Variational equations
[Cessent and Després] Let ξk satisfy the adjoint equation

∇ · ρ−1∇ξk + κ2ρ−1ξk = 0 in Ωk

by the Helmholtz and adjoint Helmholtz equations∫
∂Ωk

1
σ

(
1
ρ

∂p
∂nk

+ iσp
)(

1
ρ

∂ξk

∂nk
+ iσξk

)
ds

=

∫
∂Ωk

1
σ

(
1
ρ

∂p
∂nk

− iσp
)(

1
ρ

∂ξk

∂nk
− iσξk

)
ds

Monk, Huttunen The UWVF in Scattering



Introduction
Derivation of the UWVF

Numerical Results
Concluding remarks

The Mesh and Continuity
Variational Formulation (UWVF)
The discrete UWVF

Variational Problem Continued

∫
∂Ωk

1
σ

(
1
ρk

∂pk

∂nk
+ iσpk

)(
1
ρk

∂ξk

∂nk
+ iσξk

)
ds

=
∑

j

∫
Σk,j

1
σ

(
− 1

ρj

∂pj

∂nj
− iσpj

)(
∂ξk

∂nk
− iσξk

)
ds

Let

Xk =

(
1
ρk

∂pk

∂nk
+ iσpk

)∣∣∣∣
∂Ωk

and Yk =

(
1
ρk

∂ξk

∂nk
+ iσξk

)∣∣∣∣
∂Ωk

and let

Fk (Yk ) =

(
1
ρk

∂ξk

∂nk
− iσξk

)∣∣∣∣
∂Ωk
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Variational Problem Continued

Let

Xk =

(
1
ρk

∂pk

∂nk
+ iσpk

)∣∣∣∣
∂Ωk

and Yk =

(
1
ρk

∂ξk

∂nk
+ iσξk

)∣∣∣∣
∂Ωk

and let

Fk (Yk ) =

(
1
ρk

∂ξk

∂nk
− iσξk

)∣∣∣∣
∂Ωk

then, for a tetrahedron surrounded by four other tetrahedra∫
∂Ωk

1
σ
XkYk ds = −

∑
j

∫
Σk,j

1
σ
XjFk (Yk ) ds

boundary faces are handled using the boundary condition.
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The Discrete UWVF
For each element Ωk we choose pk directions d j on the unit
sphere [Sloan et al.] and define the solution on that element to
be a sum of traces of plane waves

X h
k =

pk∑
j=1

xk
j

(
1
ρk

∂ exp(iκd j · x)

∂nk
+ iσ exp(iκd j · x)

)∣∣∣∣
∂Ωk

The test function is, for 1 ≤ r ≤ pk ,

Yh
k =

(
1
ρk

∂ exp(iκd r · x)

∂nk
+ iσ exp(iκd r · x)

)∣∣∣∣
∂Ωk

In this case Fk (Yh
k ) is easy to compute:

Fk (Yh
k ) =

(
1
ρk

∂ exp(iκd r · x)

∂nk
− iσ exp(iκd r · x)

)∣∣∣∣
∂Ωk
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Properties of the acoustic UWVF

[Huttunen, Monk] The UWVF is a special implementation
of the upwind Discontinuous Galerkin method using plane
wave basis functions.
[Cessenat/Després, 2D] Assume =(κ) = 0. If |Q| < 1,
M = 2µ + 1

‖X − XM‖L2(Γ) ≤ Chµ−1/2‖u‖Cµ+1(Ω)

The discrete problem has the form (B − C)x = b where B
is Hermitian positive definite and the eigenvalues of B−1C
lie in the closure of the unit disk excluding 1
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UWVF results in 2D

Domain Ω is annulus 0.4 ≤ r ≤ 1

Remesh at each κ to
keep λ/h ≈ 8 (FEM)
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Remesh at each κ to
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√
2pλ/h ≈ 4.5

(UWVF)
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Conditioning
Basic UWVF uses p directions/element. This can cause
bad conditioning for B (e.g. on small elements, if κ
changes,...)
We use different pk for element Ωk . One possibility: chose
pk so that the condition number of the submatrix
corresponding to

∫
∂K XY ds is a desired maximum value.
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Efficiency of the ABC
Logarithm of the modulus of the far field pattern for scattering of
a plane wave by a sphere κ = 4, a = 1, wavelength λ ≈ 1.6 for
different ABC boundary diameter
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RCS Sphere Classic ; b=2, g=1.75, r=1.5, c=1.25
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ABC at r = 1.25(c), 1.5(r), “Exact”
and r = 1.75(g), 2(b)

Note: these are electromagnetic results
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The PML

The Sommerfeld absorbing boundary condition is not efficient.
We want to use the “Perfectly Matched Layer” (PML) of
Bérenger.

PML absorbing layer

ABC on outer boundary

Unmodified equations

Modified PML equations

Scatterer

G

The PML layer absorbs in-
cident waves exponentially
rapidly. The only reflection is
from the outer boundary (for
the continuous problem).
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UWVF with PML in 3D

Let us use the complex stretching of spatial variables

x ′ =

x +
i
κ

∫ x

x0

σ0(|x | − x0)
n dx , |x | ≥ x0,

x , |x | < x0

and define
∂x ′

∂x
= dx .

By using similar expression for y and z, and requiring p satisfy
the Helmholtz equation in primed variables, we obtain a
modified Helmholtz equation:

∇ ·
(

1
ρ

A∇
)

p +
κ2η2

ρ
p = 0 where A = diag

(
dydz

dx
,
dxdz

dy
,
dxdy

dz

)
.
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PML continued

For the PML elements, the boundary function χk and plane
wave basis function are

χk =
((
− 1

ρk
nk · (Ak∇)− iσ

)
pk

)
and ϕk ,` = eiκk dk,`·r ′ ,

where r ′ = (x ′, y ′, z ′). Surprisingly, n = 0 works quite well with
the UWVF.
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Improvement due to the PML
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Another Test Example (point source)
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Point Source Results
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Parallelization

The UWVF has been parallelized using domain decomposition
(METIS) and MPI. The basic tasks are assembly and the
iterative solver (BiCGStab, easily parallelized). Coupling is via
faces.

Left: METIS decomposition
of a mesh around a sphere
(!) into 8 parts.

Current problem: how to pre-
dict the number of direc-
tions per element to guar-
antee good conditioning and
accuracy.
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Choice of pk [Caryol and Collino]
How can we choose pk to ensure accuracy?
Idea: Good approximation of a general plane wave is
necessary for convergence.
In 2D, using pk = 2µ + 1 directions, if h is radius of the
element

E ≤ 1
(µ + 1)!

(
1 +

√
µ + 3

µ + 2

)(
kh
2

)µ+1

In 2D, to obtain an interpolant with pointwise error ε

µ ≈ κh +
1
2

(
3
2

W
(

1
3πε2

))2/3

(κh)1/3

where W (x) exp(W (x)) = x .
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Sphere with radius a = 1.
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Left: The mesh. Right: The UWVF approximation for a plane
wave at κa ≈ 63.
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Error as a function of the wave number
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The results are computed in the same mesh using the condition
number limit Max(Cond(Dk ))< 1e6. Note, the total error includes
errors due to UWVF approximation, PML and triangulated sur-
face of the sphere.
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Scalability and load distribution
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Left: CPU time as a function of number of processors.
Right: Storage on different processors when 12 processors are
used.
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Iterative solution of the linear system
The UWVF linear system can be solved by simple iterative
scheme. We use BiCGStab.
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Bi−CGStab

Number of DoF: 3,474, 770
Number of CPUs: 24 (2.8GHz P4)
Available Memory: 48GB
Switch: 1000BaseT

Solution time is 451s using 25.3 GB memory (109 iterations).
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Comparison to FEMLAB [Huttunen]

FEMLAB P2 FEM with low order ABC.
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Comparison continued

FEMLAB (two meshes):
f (kHz) h (mm) Elem. CPU (s) Error (%) Mem (GB)

100 3 101 978 448 30.88 1.4
150 1.8 478 471 4699 25.39 2.5
200 1.8 478 471 5321 20.64 2.5
300 1.8 478 471 5391 30.13 2.5

UWVF (one mesh, variable # directions):
f (kHz) h (mm) Elem. CPU (s) Error (%) Mem (GB)

100 15 16 926 275 28.56 0.2
150 15 16 926 353 23.22 0.3
200 15 16 926 449 20.07 0.4
300 15 16 926 854 18.96 1.1
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FEMLAB implementation

The acoustic UWVF code will
appear as part of the acoustics
module in FEMLAB.
The Maxwell and fluid-structure
UWVF (in that order!) will also be
added later.
Please see www.waveller.com
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Submarine: meshes

FEM:

UWVF:
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Submarine: UWVF calculation in FEMLAB
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Submarine: UWVF calculation
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Extensions/current work

The UWVF can be extended to certain symmetric hyperbolic
systems and in particular to

Maxwell’s equations
PML
Coupled FMM and UWVF [with Eric Darrigrand, Rennes]

Linear elasticity
Coupled fluid-solid problem (2D only so far)
Comparison with PUFEM [Huttunen, Gamallo and Astley]
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Summary

The FEM is the best developed volume method for
practical computations. High order works best for wave
problems with smooth solutions.
The UWVF offers an alternative to PUFEM for plane wave
bases. We find it competetive to FEM.
The UWVF performs well provided the number of
directions is chosen carefully and the scatterer is smooth
(questions remain about performance near singularities).
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