Solving Time-Harmonic Scattering Problems by the Ultra Weak Variational Formulation
 Plane waves as basis functions

Peter Monk ${ }^{1}$ Tomi Huttunen ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences
University of Delaware
${ }^{2}$ Department of Applied Physics University of Kuopio, Finland

Research supported in part by a grant from AFOSR

Outline

(9) Introduction

- Acoustic Problems
- The Helmholtz Equation
- Decisions, decisions...
(2) Derivation of the UWVF
- The Mesh and Continuity
- Variational Formulation (UWVF)
- The discrete UWVF
(3) Numerical Results
- 2D Results and Conditioning
- Improving the ABC
- Parallelization
- FEMLAB and Another Example

Outline

(9) Introduction

- Acoustic Problems
- The Helmholtz Equation
- Decisions, decisions...Derivation of the UWVF
- The Mesh and Continuity
- Variational Formulation (UWVF)
- The discrete UWVFNumerical Results
- 2D Results and Conditioning
- Improving the ABC
- Parallelization
- FEMLAB and Another Example

Computational Acoustics Examples [Huttunen]

Slice: Pressure

The UWVF in Scattering

Acoustic Scattering

Given the shape and acoustic properties of an object, predict how it interacts with acoustic waves at a single frequency.

Acoustic Scattering

Given the shape and acoustic properties of an object, predict how it interacts with acoustic waves at a single frequency.

Incident

Acoustic Scattering

Given the shape and acoustic properties of an object, predict how it interacts with acoustic waves at a single frequency.

Incident

Scattered

Acoustic Scattering

Given the shape and acoustic properties of an object, predict how it interacts with acoustic waves at a single frequency.

Incident

Scattered

Total

Outline

(9) Introduction

- Acoustic Problems
- The Helmholtz Equation
- Decisions, decisions...Derivation of the UWVF
- The Mesh and Continuity
- Variational Formulation (UWVF)
- The discrete UWVFNumerical Results
- 2D Results and Conditioning
- Improving the ABC
- Parallelization
- FEMLAB and Another Example

Helmholtz Equation

Given a bounded doman Ω the pressure field is $P(\boldsymbol{x}, t)=p(\boldsymbol{x}) \exp (i \omega t)$ where p satisfies

$$
\nabla \cdot \rho^{-1} \nabla p+\kappa^{2} \rho^{-1} p=0 \text { in } \Omega
$$

where ρ is the density and the wave number (complex!) is given by $\kappa=\omega / c+i \alpha$ where c is the speed of sound and α is the absorption coefficient. Boundary condition

$$
\left(\rho^{-1} \frac{\partial p}{\partial n}-i \sigma p\right)=Q\left(\rho^{-1} \frac{\partial p}{\partial n}+i \sigma p\right)+g
$$

on the boundary $\partial \Omega$ where g is data, $|Q| \leq 1$ and $\sigma \in \mathbb{R}$

A Model Scattering Problem

Let $\Omega \subset \mathbb{R}^{3}$ (or \mathbb{R}^{2}) with disjoint boundaries Γ and Σ.
Approximate u which satisfies

$$
\begin{aligned}
\Delta u+\kappa^{2} u & =0 \text { in } \Omega \\
u & =g \text { on } \Gamma(Q=1) \\
\frac{\partial u}{\partial \nu}-i k u & =0 \text { on } \Sigma(Q=0)
\end{aligned}
$$

where g describes the incoming plane wave. The region Ω is meshed with tetrahedra and the UWVF applied there.
ABC = Absorbing Boundary Condition

Outline

(9) Introduction

- Acoustic Problems
- The Helmholtz Equation
- Decisions, decisions...

Derivation of the UWVF

- The Mesh and Continuity
- Variational Formulation (UWVF)
- The discrete UWVF

Numerical Results

- 2D Results and Conditioning
- Improving the ABC
- Parallelization
- FEMLAB and Another Example

Possible methods

- Integral equations. Handle unbounded media, complex shapes. There are fast solvers but they are difficult to program and complex for penetrable media, coatings, narrow objects....
- Finite elements. Higher order needed to handle dispersion and becomes expensive at short wavelength. Geometry and complex materials handled. Difficult to solve the linear system and handle unbounded domains.

Possible methods

- Integral equations. Handle unbounded media, complex shapes. There are fast solvers but they are difficult to program and complex for penetrable media, coatings, narrow objects....
- Finite elements. Higher order needed to handle dispersion and becomes expensive at short wavelength. Geometry and complex materials handled. Difficult to solve the linear system and handle unbounded domains.

The big decision

Motivated by medical ultrasound applications (complex structure, short wavelength) we decided on the following:

- A volume based method (finite element grid)
- Special shape functions ("basis functions") that are solutions of the Helmholtz equation on each element.

Methods using special basis functions

- Partition of unity finite element method = PUFEM (Babuška and Melenk 1997, Keller and Giladi 2001, Huttenen, Gamallo and Astley 2005, Kim et al 2005)
- Least squares method (Trefftz, Monk and Wang 1999, Desmet 2002)
- Discontinuous enrichment method (Farhat et al. 2001 2003, 2005)

Methods using special basis functions

- Partition of unity finite element method = PUFEM (Babuška and Melenk 1997, Keller and Giladi 2001, Huttenen, Gamallo and Astley 2005, Kim et al 2005)
- Least squares method (Trefftz, Monk and Wang 1999, Desmet 2002)
- Discontinuous enrichment method (Farhat et al. 2001 2003, 2005)

Methods using special basis functions

- Partition of unity finite element method = PUFEM (Babuška and Melenk 1997, Keller and Giladi 2001, Huttenen, Gamallo and Astley 2005, Kim et al 2005)
- Least squares method (Trefftz, Monk and Wang 1999, Desmet 2002)
- Discontinuous enrichment method (Farhat et al. 2001, 2003, 2005)

Methods using special basis functions

- Partition of unity finite element method = PUFEM (Babuška and Melenk 1997, Keller and Giladi 2001, Huttenen, Gamallo and Astley 2005, Kim et al 2005)
- Least squares method (Trefftz, Monk and Wang 1999, Desmet 2002)
- Discontinuous enrichment method (Farhat et al. 2001, 2003, 2005)
- Plane wave augmented basis in integral equations (Darrigrand 2001, Perrey-Debain et al. 2002, Chandler-Wilde and Langdon 2004/5,...)

Methods using special basis functions

- Partition of unity finite element method = PUFEM (Babuška and Melenk 1997, Keller and Giladi 2001, Huttenen, Gamallo and Astley 2005, Kim et al 2005)
- Least squares method (Trefftz, Monk and Wang 1999, Desmet 2002)
- Discontinuous enrichment method (Farhat et al. 2001, 2003, 2005)
- Plane wave augmented basis in integral equations (Darrigrand 2001, Perrey-Debain et al. 2002, Chandler-Wilde and Langdon 2004/5,...)
- Ultra weak variational formulation (Després 1994, Cessenat and Després 1998)

Outline

(1) Introduction

- Acoustic Problems
- The Helmholtz Equation
- Decisions, decisions...
(2) Derivation of the UWVF
- The Mesh and Continuity
- Variational Formulation (UWVF)
- The discrete UWVFNumerical Results
- 2D Results and Conditioning
- Improving the ABC
- Parallelization
- FEMLAB and Another Example

The Mesh

Approximate the domain Ω by a tetrahedral finite element mesh consisting of N_{h} tetrahedra $\Omega_{k}, k=1, \cdots, N_{h}$ of maximum diameter h.

The Mesh

Approximate the domain Ω by a tetrahedral finite element mesh consisting of N_{h} tetrahedra $\Omega_{k}, k=1, \cdots, N_{h}$ of maximum diameter h.

The Mesh

Approximate the domain Ω by a tetrahedral finite element mesh consisting of N_{h} tetrahedra $\Omega_{k}, k=1, \cdots, N_{h}$ of maximum diameter h.

The Mesh

Approximate the domain Ω by a tetrahedral finite element mesh consisting of N_{h} tetrahedra $\Omega_{k}, k=1, \cdots, N_{h}$ of maximum diameter h.

The Mesh

Approximate the domain Ω by a tetrahedral finite element mesh consisting of N_{h} tetrahedra $\Omega_{k}, k=1, \cdots, N_{h}$ of maximum diameter h.

Major restriction: ρ and κ must be piecewise constant and constant on each element.

Required continuity between elements

Let $p_{k}=\left.p\right|_{\Omega_{k}}$ and $p_{j}=\left.p\right|_{\Omega_{j}}$ then since p is a solution of the Helmholtz equation

$$
p_{k}=p_{j} \text { and } \frac{1}{\rho_{k}} \frac{\partial p_{k}}{\partial n_{k}}=-\frac{1}{\rho_{j}} \frac{\partial p_{j}}{\partial n_{j}} \text { on } \Sigma_{j, k}
$$

In the UWVF this is achieved by demanding that Robin (one way wave equation) data agree on the interfaces, so on $\Sigma_{j, k}$

$$
\begin{aligned}
& \frac{1}{\rho_{k}} \frac{\partial p_{k}}{\partial n_{k}}+i \sigma p_{k}=-\frac{1}{\rho_{j}} \frac{\partial p_{j}}{\partial n_{j}}+i \sigma p_{j} \\
& \frac{1}{\rho_{k}} \frac{\partial p_{k}}{\partial n_{k}}-i \sigma p_{k}=-\frac{1}{\rho_{j}} \frac{\partial p_{j}}{\partial n_{j}}-i \sigma p_{j}
\end{aligned}
$$

where $\sigma>0$ is a parameter (function) on $\Sigma_{j, k}$ (e.g. $\sigma=\Re(\kappa)$).

Outline

(1) Introduction

- Acoustic Problems
- The Helmholtz Equation
- Decisions, decisions...
(2) Derivation of the UWVF
- The Mesh and Continuity
- Variational Formulation (UWVF)
- The discrete UWVF

Numerical Results

- 2D Results and Conditioning
- Improving the ABC
- Parallelization
- FEMLAB and Another Example

Variational equations

[Cessent and Després] Let ξ_{k} satisfy the adjoint equation

$$
\nabla \cdot \rho^{-1} \nabla \xi_{k}+\overline{\kappa^{2}} \rho^{-1} \xi_{k}=0 \text { in } \Omega_{k}
$$

Variational equations

[Cessent and Després] Let ξ_{k} satisfy the adjoint equation

$$
\nabla \cdot \rho^{-1} \nabla \xi_{k}+\overline{\kappa^{2}} \rho^{-1} \xi_{k}=0 \text { in } \Omega_{k}
$$

then for $\sigma>0$ (e.g. $\sigma=\Re(\kappa)$)

$$
\begin{aligned}
\int_{\partial \Omega_{k}} \frac{1}{\sigma}\left(\frac{1}{\rho} \frac{\partial p}{\partial n_{k}}+i \sigma p\right)\left(\overline{\frac{1}{\rho} \frac{\partial \xi_{k}}{\partial n_{k}}+i \sigma \xi_{k}}\right) d s= & \int_{\partial \Omega_{k}} \frac{1}{\sigma}\left(\frac{1}{\rho} \frac{\partial p}{\partial n_{k}}-i \sigma p\right)\left(\overline{\frac{1}{\rho} \frac{\partial \xi_{k}}{\partial n_{k}}-i \sigma \xi_{k}}\right) d s \\
& -2 i \int_{\partial \Omega_{k}}\left(\frac{1}{\rho} \frac{\partial p}{\partial n_{k}} \overline{\xi_{k}}-\overline{\frac{1}{\rho}} \frac{\partial \xi_{k}}{\partial n_{k}} p\right) d s
\end{aligned}
$$

Variational equations

[Cessent and Després] Let ξ_{k} satisfy the adjoint equation

$$
\nabla \cdot \rho^{-1} \nabla \xi_{k}+\overline{\kappa^{2}} \rho^{-1} \xi_{k}=0 \text { in } \Omega_{k}
$$

by Green's Theorem

$$
\begin{aligned}
\int_{\partial \Omega_{k}} \frac{1}{\sigma}\left(\frac{1}{\rho} \frac{\partial p}{\partial n_{k}}+i \sigma p\right)\left(\overline{\frac{1}{\rho} \frac{\partial \xi_{k}}{\partial n_{k}}+i \sigma \xi_{k}}\right) d s= & \int_{\partial \Omega_{k}} \frac{1}{\sigma}\left(\frac{1}{\rho} \frac{\partial p}{\partial n_{k}}-i \sigma p\right)\left(\overline{\frac{1}{\rho} \frac{\partial \xi_{k}}{\partial n_{k}}-i \sigma \xi_{k}}\right) d s \\
& -2 i \int_{\Omega_{k}}\left(\nabla \cdot \frac{1}{\rho} \nabla p \overline{\xi_{k}}-\overline{\left.\nabla \cdot \frac{1}{\rho} \nabla \xi_{k} p\right) d V}\right.
\end{aligned}
$$

Variational equations

[Cessent and Després] Let ξ_{k} satisfy the adjoint equation

$$
\nabla \cdot \rho^{-1} \nabla \xi_{k}+\overline{\kappa^{2}} \rho^{-1} \xi_{k}=0 \text { in } \Omega_{k}
$$

by the Helmholtz and adjoint Helmholtz equations

$$
\begin{aligned}
& \int_{\partial \Omega_{k}} \frac{1}{\sigma}\left(\frac{1}{\rho} \frac{\partial p}{\partial n_{k}}+i \sigma p\right)\left(\overline{\frac{1}{\rho} \frac{\partial \xi_{k}}{\partial n_{k}}+i \sigma \xi_{k}}\right) d s \\
= & \int_{\partial \Omega_{k}} \frac{1}{\sigma}\left(\frac{1}{\rho} \frac{\partial p}{\partial n_{k}}-i \sigma p\right)\left(\overline{\frac{1}{\rho} \frac{\partial \xi_{k}}{\partial n_{k}}-i \sigma \xi_{k}}\right) d s
\end{aligned}
$$

Variational Problem Continued

$$
\begin{aligned}
& \int_{\partial \Omega_{k}} \frac{1}{\sigma}\left(\frac{1}{\rho_{k}} \frac{\partial p_{k}}{\partial n_{k}}+i \sigma p_{k}\right)\left(\overline{\frac{1}{\rho_{k}} \frac{\partial \xi_{k}}{\partial n_{k}}+i \sigma \xi_{k}}\right) d s \\
= & \sum_{j} \int_{\Sigma_{k, j}} \frac{1}{\sigma}\left(-\frac{1}{\rho_{j}} \frac{\partial p_{j}}{\partial n_{j}}-i \sigma p_{j}\right)\left(\overline{\frac{\partial \xi_{k}}{\partial n_{k}}-i \sigma \xi_{k}}\right) d s
\end{aligned}
$$

Let

$$
\mathcal{X}_{k}=\left.\left(\frac{1}{\rho_{k}} \frac{\partial p_{k}}{\partial n_{k}}+i \sigma p_{k}\right)\right|_{\partial \Omega_{k}} \text { and } \mathcal{Y}_{k}=\left.\left(\frac{1}{\rho_{k}} \frac{\partial \xi_{k}}{\partial n_{k}}+i \sigma \xi_{k}\right)\right|_{\partial \Omega_{k}}
$$

and let

$$
F_{k}\left(\mathcal{Y}_{k}\right)=\left.\left(\frac{1}{\rho_{k}} \frac{\partial \xi_{k}}{\partial n_{k}}-i \sigma \xi_{k}\right)\right|_{\partial \Omega_{k}}
$$

Variational Problem Continued

Let

$$
\mathcal{X}_{k}=\left.\left(\frac{1}{\rho_{k}} \frac{\partial p_{k}}{\partial n_{k}}+i \sigma p_{k}\right)\right|_{\partial \Omega_{k}} \text { and } \mathcal{Y}_{k}=\left.\left(\frac{1}{\rho_{k}} \frac{\partial \xi_{k}}{\partial n_{k}}+i \sigma \xi_{k}\right)\right|_{\partial \Omega_{k}}
$$

and let

$$
F_{k}\left(\mathcal{Y}_{k}\right)=\left.\left(\frac{1}{\rho_{k}} \frac{\partial \xi_{k}}{\partial n_{k}}-i \sigma \xi_{k}\right)\right|_{\partial \Omega_{k}}
$$

then, for a tetrahedron surrounded by four other tetrahedra

$$
\int_{\partial \Omega_{k}} \frac{1}{\sigma} \mathcal{X}_{k} \overline{\mathcal{Y}_{k}} d s=-\sum_{j} \int_{\Sigma_{k, j}} \frac{1}{\sigma} \mathcal{X}_{j} \overline{F_{k}\left(\mathcal{Y}_{k}\right)} d s
$$

boundary faces are handled using the boundary condition.

Outline

(1) Introduction

- Acoustic Problems
- The Helmholtz Equation
- Decisions, decisions...
(2) Derivation of the UWVF
- The Mesh and Continuity
- Variational Formulation (UWVF)
- The discrete UWVFNumerical Results
- 2D Results and Conditioning
- Improving the ABC
- Parallelization
- FEMLAB and Another Example

The Discrete UWVF

For each element Ω_{k} we choose p_{k} directions \boldsymbol{d}_{j} on the unit sphere [Sloan et al.] and define the solution on that element to be a sum of traces of plane waves

$$
\mathcal{X}_{k}^{h}=\left.\sum_{j=1}^{p_{k}} x_{j}^{k}\left(\frac{1}{\rho_{k}} \frac{\partial \exp \left(i \bar{\kappa} \boldsymbol{d}_{j} \cdot \boldsymbol{x}\right)}{\partial n_{k}}+i \sigma \exp \left(i \bar{k} \boldsymbol{d}_{j} \cdot \boldsymbol{x}\right)\right)\right|_{\partial \Omega_{k}}
$$

The test function is, for $1 \leq r \leq p_{k}$,

$$
\mathcal{Y}_{k}^{h}=\left.\left(\frac{1}{\rho_{k}} \frac{\partial \exp \left(i \bar{\kappa} \boldsymbol{d}_{r} \cdot \boldsymbol{x}\right)}{\partial n_{k}}+i \sigma \exp \left(i \bar{\kappa} \boldsymbol{d}_{r} \cdot \boldsymbol{x}\right)\right)\right|_{\partial \Omega_{k}}
$$

In this case $F_{k}\left(\mathcal{Y}_{k}^{h}\right)$ is easy to compute:

$$
F_{k}\left(y_{k}^{h}\right)=\left.\left(\frac{1}{\rho_{k}} \frac{\partial \exp \left(i \bar{\pi} \boldsymbol{d}_{r} \cdot \boldsymbol{x}\right)}{\partial n_{k}}-i \sigma \exp \left(i \bar{\kappa} \boldsymbol{d}_{r} \cdot \boldsymbol{x}\right)\right)\right|_{\partial \Omega_{k}}
$$

Properties of the acoustic UWVF

- [Huttunen, Monk] The UWVF is a special implementation of the upwind Discontinuous Galerkin method using plane wave basis functions.
- [Cessenat/Després, 2D] Assume $\Im(\kappa)=0$. If $|Q|<1$, $M=2 \mu+1$

$$
\left\|\mathcal{X}-\mathcal{X}_{M}\right\|_{L^{2}(\Gamma)} \leq C h^{\mu-1 / 2}\|u\|_{\mathcal{C}^{\mu+1}(\Omega)}
$$

- The discrete problem has the form $(B-C) \boldsymbol{x}=\boldsymbol{b}$ where B is Hermitian positive definite and the eigenvalues of $B^{-1} C$ lie in the closure of the unit disk excluding 1

Parallelization

Outline

(1) Introduction

- Acoustic Problems
- The Helmholtz Equation
- Decisions, decisions...Derivation of the UWVF
- The Mesh and Continuity
- Variational Formulation (UWVF)
- The discrete UWVF
(3) Numerical Results
- 2D Results and Conditioning
- Improving the ABC
- Parallelization
- FEMLAB and Another Example

UWVF results in 2D

Domain Ω is annulus $0.4 \leq r \leq 1$

Remesh at each κ to keep $\lambda / h \approx 8$ (FEM)

Remesh at each κ to keep $\sqrt{2 p} \lambda / h \approx 4.5$ (UWVF)

Dirichlet

Neumann

Conditioning

- Basic UWVF uses p directions/element. This can cause bad conditioning for B (e.g. on small elements, if κ changes,...)
- We use different p_{k} for element Ω_{k}. One possibility: chose p_{k} so that the condition number of the submatrix corresponding to $\int_{\partial K} \mathcal{X} \overline{\mathcal{Y}} d s$ is a desired maximum value.

Domain

Uniform Basis, Cond (D_{k})

Cond. No.
Uniform p_{k}

Outline

(1) Introduction

- Acoustic Problems
- The Helmholtz Equation
- Decisions, decisions...Derivation of the UWVF
- The Mesh and Continuity
- Variational Formulation (UWVF)
- The discrete UWVF
(3) Numerical Results
- 2D Results and Conditioning
- Improving the ABC
- Parallelization
- FEMLAB and Another Example

Efficiency of the ABC

Logarithm of the modulus of the far field pattern for scattering of a plane wave by a sphere $\kappa=4, a=1$, wavelength $\lambda \approx 1.6$ for different ABC boundary diameter

ABC at $r=1.25(c), 1.5(r)$, and $r=1.75(g), 2(b)$

"Exact"

Note: these are electromagnetic results

The PML

The Sommerfeld absorbing boundary condition is not efficient. We want to use the "Perfectly Matched Layer" (PML) of Bérenger.

ABC on outer boundary
Modified PML equations

The PML layer absorbs incident waves exponentially rapidly. The only reflection is from the outer boundary (for the continuous problem).

UWVF with PML in 3D

Let us use the complex stretching of spatial variables
$x^{\prime}=\left\{\begin{array}{ll}x+\frac{i}{\kappa} \int_{x_{0}}^{x} \sigma_{0}\left(|x|-x_{0}\right)^{n} d x, & |x| \geq x_{0}, \\ x, & |x|<x_{0}\end{array} \quad\right.$ and define $\quad \frac{\partial x^{\prime}}{\partial x}=d_{x}$.

By using similar expression for y and z, and requiring p satisfy the Helmholtz equation in primed variables, we obtain a modified Helmholtz equation:
$\nabla \cdot\left(\frac{1}{\rho} A \nabla\right) p+\frac{\kappa^{2} \eta^{2}}{\rho} p=0 \quad$ where $\quad A=\operatorname{diag}\left(\frac{d_{y} d_{z}}{d_{x}}, \frac{d_{x} d_{z}}{d_{y}}, \frac{d_{x} d_{y}}{d_{z}}\right)$.

PML continued

For the PML elements, the boundary function χ_{k} and plane wave basis function are

$$
\chi_{k}=\left(\left(-\frac{1}{\rho_{k}} n_{k} \cdot\left(A_{k} \nabla\right)-i \sigma\right) p_{k}\right) \quad \text { and } \quad \varphi_{k, \ell}=e^{i \bar{\sigma}_{k} d d_{k}, \cdot \cdot^{\prime}},
$$

where $r^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. Surprisingly, $n=0$ works quite well with the UWVF.

Introduction

Improvement due to the PML

Introduction

2D Results and Conditioning
Improving the ABC
Parallelization
FEMLAB and Another Example

Another Test Example (point source)

Introduction

Concluding remarks

Point Source Results

Exact

$$
\sigma_{0}=0
$$

$\sigma_{0}=500$

$$
\sigma_{0}=500
$$

$$
\sigma_{0}=100
$$

$$
\sigma_{0}=1000
$$

Outline

(1) Introduction

- Acoustic Problems
- The Helmholtz Equation
- Decisions, decisions...Derivation of the UWVF
- The Mesh and Continuity
- Variational Formulation (UWVF)
- The discrete UWVF
(3) Numerical Results
- 2D Results and Conditioning
- Improving the ABC
- Parallelization
- FEMLAB and Another Example

Parallelization

The UWVF has been parallelized using domain decomposition (METIS) and MPI. The basic tasks are assembly and the iterative solver (BiCGStab, easily parallelized). Coupling is via faces.

Left: METIS decomposition of a mesh around a sphere (!) into 8 parts.

Current problem: how to predict the number of directions per element to guarantee good conditioning and accuracy.

Choice of p_{k} [Caryol and Collino]

- How can we choose p_{k} to ensure accuracy?
- Idea: Good approximation of a general plane wave is necessary for convergence.
- In 2D, using $p_{k}=2 \mu+1$ directions, if h is radius of the element

$$
E \leq \frac{1}{(\mu+1)!}\left(1+\frac{\sqrt{\mu+3}}{\mu+2}\right)\left(\frac{k h}{2}\right)^{\mu+1}
$$

- In 2D, to obtain an interpolant with pointwise error ϵ

$$
\mu \approx \kappa h+\frac{1}{2}\left(\frac{3}{2} W\left(\frac{1}{3 \pi \epsilon^{2}}\right)\right)^{2 / 3}(\kappa h)^{1 / 3}
$$

where $W(x) \exp (W(x))=x$.

Sphere with radius $a=1$.

Left: The mesh. Right: The UWVF approximation for a plane wave at $\kappa \boldsymbol{a} \approx 63$.

Error as a function of the wave number

The results are computed in the same mesh using the condition number limit $\operatorname{Max}\left(\operatorname{Cond}\left(D_{k}\right)\right)<1 e 6$. Note, the total error includes errors due to UWVF approximation, PML and triangulated surface of the sphere.

Scalability and load distribution

Left: CPU time as a function of number of processors.
Right: Storage on different processors when 12 processors are used.

Iterative solution of the linear system

The UWVF linear system can be solved by simple iterative scheme. We use BiCGStab.

Number of DoF: $\quad 3,474,770$
Number of CPUs:
Available Memory: Switch:

24 (2.8GHz P4)
48GB 1000BaseT

Solution time is 451 s using 25.3 GB memory (109 iterations).

Outline

(1) Introduction

- Acoustic Problems
- The Helmholtz Equation
- Decisions, decisions...

Derivation of the UWVF

- The Mesh and Continuity
- Variational Formulation (UWVF)
- The discrete UWVF
(3) Numerical Results
- 2D Results and Conditioning
- Improving the ABC
- Parallelization
- FEMLAB and Another Example

Comparison to FEMLAB [Huttunen]

FEMLAB P_{2} FEM with low order $A B C$.

Comparison continued

FEMLAB (two meshes):

$\mathrm{f}(\mathrm{kHz})$	$\mathrm{h}(\mathrm{mm})$	Elem.	CPU (s)	Error (\%)	Mem (GB)
100	3	101978	448	30.88	1.4
150	1.8	478471	4699	25.39	2.5
200	1.8	478471	5321	20.64	2.5
300	1.8	478471	5391	30.13	2.5

UWVF (one mesh, variable \# directions):

$\mathrm{f}(\mathrm{kHz})$	$\mathrm{h}(\mathrm{mm})$	Elem.	CPU (s)	Error (\%)	Mem (GB)
100	15	16926	275	28.56	0.2
150	15	16926	353	23.22	0.3
200	15	16926	449	20.07	0.4
300	15	16926	854	18.96	1.1

FEMLAB implementation

- The acoustic UWVF code will appear as part of the acoustics module in FEMLAB.
- The Maxwell and fluid-structure UWVF (in that order!) will also be added later.
- Please see www.waveller.com

2D Results and Conditioning
Improving the ABC
Parallelization
FEMLAB and Another Example

Submarine: meshes

FEM:

UWVF:

Monk, Huttunen
The UWVF in Scattering

Submarine: UWVF calculation in FEMLAB

Slice: Pressure

Introduction
Derivation of the UWVF
Numerical Results
Concluding remarks

2D Results and Conditioning
Improving the ABC

Parallelization

FEMLAB and Another Example

Submarine: UWVF calculation

Slice: Pressure

Slice: Pressure

Extensions/current work

The UWVF can be extended to certain symmetric hyperbolic systems and in particular to

- Maxwell's equations
- PML
- Coupled FMM and UWVF [with Eric Darrigrand, Rennes]
- Linear elasticity
- Coupled fluid-solid problem (2D only so far)
- Comparison with PUFEM [Huttunen, Gamallo and Astley]

Summary

- The FEM is the best developed volume method for practical computations. High order works best for wave problems with smooth solutions.
- The UWVF offers an alternative to PUFEM for plane wave bases. We find it competetive to FEM.
- The UWVF performs well provided the number of directions is chosen carefully and the scatterer is smooth (questions remain about performance near singularities).

