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Geometrical optics for high-frequency waves

Consider Helmholtz equation at high frequencies,

Δu + n(x)2ω2u = 0, ω � 1.

Look at simple wave solutions of the form

u(x) ≈ A(x)eiωφ(x).

• Amplitude A and phase φ vary on a much coarser scale than u.

• Geometrical optics approximation considers A and φ as ω → ∞,

|∇φ| = n(x), 2∇φ · ∇A + ΔφA = 0.

• Waves propagate as rays, c.f. visible light.

• Good accuracy for large ω. Computational cost ω-independent.

• Not all wave effects captured correctly, in particular at boundaries

(diffracted, creeping waves) and caustics.

• Geometrical theory of diffraction [Keller, 62] gives corrections.
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Creeping rays, cont.

Creeping rays are created at the shadowline, where the incident
plane wave direction is tangential to the surface.

They then follow geodesics on the (dark side of the) scatterer,
continuously shedding diffracted rays in their tangential direction.



Governing equations

Suppose X(u, v) ∈ R
3 describes the scatterer surface, with (u, v)

belonging to a bounded set Ω ⊂ R
2,

The geodesics are then given by the ODEs in parameter space

ü + Γ1
11u̇

2 + 2Γ1
12u̇v̇ + Γ1

22v̇
2 = 0,

v̈ + Γ2
11u̇

2 + 2Γ2
12u̇v̇ + Γ2

22v̇
2 = 0,

where Γk
ij(u, v) are the Christoffel symbols for the surface.

By changing parameterization along the geodesic, ODEs reduce to

du

dτ
= cos θ,

dv

dτ
= sin θ,

dθ

dτ
= V (u, v, θ).

V depends on the Γk
ij .

θ is the direction of geodesic in parameter

space.



Creeping rays in parameter space
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May solve surface eikonal equation

∇φT (JT J)−1∇φ = n(u, v)2, J = [XuXv]

However, creeping rays may cross ⇒
caustics and multivaluedness.



Phase space & Escape equations

C.f. [Fomel, Sethian, PNAS 2002]

We introduce the phase space P = R
2 × S, and consider the triplet

(u, v, θ) as a point in this space.

The geodesic locations/directions on the scatterer is then confined
to a subdomain Ωp = Ω × S ⊂ P in phase space.

New unknown: F : P → P

Let F (u, v, θ) = (U, V, Θ) be the point
where the geodesic starting at (u, v)
with direction θ will eventually cross
the boundary of Ωp.

(u, v)
θ

Θ(U, V )
∂Ω



Phase space & Escape equations

(u, v)

θ

Θ(U, V )
∂Ω

Since the value of F is constant along a geodesic we have

0 =
d

dτ
F (u(τ), v(τ), θ(τ)) =

du

dτ
Fu +

dv

dτ
Fv +

dθ

dτ
Fθ

= cos θFu + sin θFv + V (u, v, θ)Fθ.



Escape equation

Hence, F satisfies the escape PDE

cos θFu + sin θFv + V (u, v, θ)Fθ = 0, (u, v, θ) ∈ Ωp,

with boundary condition at inflow points

F (u, v, θ) = (u, v, θ), (u, v, θ) ∈ ∂Ωinflow
p .

• F (u1, v1, θ1) = F (u2, v2, θ2) implies that (u1, v1, θ1) and
(u2, v2, θ2) are points on the same creeping ray.

• PDE can be solved by a version of Fast Marching at a
O(N3 log N) cost for N discretization points in each dimension.



Geodesic length

We can also get an ODE for the length L of the geodesic,

dL

dτ
= ρ(u, v, θ)

for some (complicated) ρ.

We define φ : P → R as

φ(u, v, θ) is the distance traveled by a geodesic starting at
the point (u, v) with direction θ before it hits the boundary
of Ωp.

φ will also satisfy an escape PDE

cos θφu + sin θφv + V (u, v, θ)φθ = ρ(u, v, θ), (u, v, θ) ∈ Ωp,

with boundary condition at inflow points

φ(u, v, θ) = 0, (u, v, θ) ∈ ∂Ωinflow
p .



Example
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Postprocessing

To get things like traveltime, wavefronts, amplitudes, etc. the PDE
solution must be postprocessed.

Example: Phase (length) from one illumination angle.

Assume shadowline is known: (u(s), v(s), θ(s)) =: γ(s).

For each point (u, v) find θ∗(u, v) and s such that

F (γ(s)) = F (u, v, θ∗).

Then phase is given by

|φ(γ(s)) − φ(u, v, θ∗(u, v))|.



Postprocessing, cont.

F is a point on the Ωp boundary

⇒ can be reduced to a point in R
2, say F = (S, Θ)

LHS and RHS of
F (γ(s)) = F (u, v, θ∗). (1)

are curves in R
2 parameterized by s and θ∗.

θ∗
s

S

Θ

Solving (1) amounts to finding
crossing points of these curves.

After discretization: Crossing
point of polylines. O(N) algo-
rithms available.
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Computational cost

• PDE can be solved in O(N3 log N)

• Computing one incoming wavefront could in principle be done
cheaper, e.g. O(N2) with wave front tracking/ray
tracing/surface eikonal eq. (If shadowline discretized by N

points.)

• Computing wavefronts for all (N2) incoming wave front angles
by these methods would be more expensive, O(N4).



Monostatic Radar Cross Section (RCS)

• Monostatic RCS = how much energy is reflected back in the
direction of incident wave.

• Most by direct reflection.

• For low observable objects at not too high frequencies, creeping
rays can give important contribution.

• Find backscattered creeping rays — rays that propagate on the
surface and return in the opposite direction of incident wave.



Backscattered creeping ray
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Finding backscattered creeping rays

Use postprocessing similar to before.

Assume shadowline is known: (u(s), v(s), θ(s)) =: γ(s).

A backscattered ray starting at point s1 and ending at point s2 on
shadowline should satisfy

F (γ(s1)) = F (γ(s2)) + c.

F (γ(s)) a curve in R
2 parameterized by s.

Find intersection points! Same kind of problem as before.



F (γ(s)) and F (γ(s)) + c, example
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Length of backscatterd rays, ellipsoid
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Convergence

Length for all angles of incoming field (symmetric part).

Computational cost O(N3 log N). (Postprocessing an O(N) operation.)

Note: Even if initial data for all N2 backscattered rays were known, ray

tracing would cost O(N3).



Amplitude of backscattered rays

By geometrical theory of diffraction (GTD, Levy and Keller, 1959)
the shedded diffracted ray has the form

u(t) ∼
(

dσ0

dσ

)1/2

eiωL(t)−� t
0 α(s)ds.

Here α is the attenuation factor,

α =
q0

ρg
ei π

6

(ωρg

2

)1/3

,

where q0 is the smallest positive zero of the Airy function and
ρg(u, v, θ) is the radius of curvature in direction θ.

The factor dσ0/dσ is the geometrical spreading: the change in
length of an infinitesimal initial creeping wavefront.



Amplitude of backscattered rays, cont

Letting β solve

dβ

dτ
= α̃(u, v, θ), α =: ω1/3α̃

the amplitude would then be

|u(t)| ∼
(

dσ0

dσ

)1/2

e−ω1/3β .

Letting B be the corresponding Eulerian variable, we get the PDE

cos θBu + sin θBv + V (u, v, θ)Bθ = ρα̃(u, v, θ), (u, v, θ) ∈ Ωp.

The geometrical spreading can be computed by postprocessing.
Qualitatively, as

”
dσ0

dσ
=

dX(γ(s))
dX(F (γ(s)))

. ”



Amplitude of backscatterd rays, ellipsoid
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Ray tracing
FM − fine grid
FM − coarse grid

Convergence

Backscattered amplitude by creeping rays for all angles of incoming
field (symmetric part).


