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Abstract

Creeping rays can give an important contribution to the solution of medium to high frequency
scattering problems. They are generated at the shadow lines of the illuminated scatterer by
grazing incident rays and propagate along geodesics on the scatterer surface, continuously
shedding diffracted rays in their tangential direction.

In this paper we show how the ray propagation problem can be formulated as a partial
differential equation (PDE) in a three-dimensional phase space. To solve the PDE we use a
fast marching method. The PDE solution contains information about all possible creeping
rays. This information includes the phase and amplitude of the field, which are extracted by
a fast postprocessing. Computationally the cost of solving the PDE is less than tracing all
rays individually by solving a system of ordinary differential equations.

We consider an application to monostatic radar cross section problems where creeping rays
from all illumination angles must be computed. The numerical results of the fast phase space
method and a comparison with the results of ray tracing are presented.

1 Introduction

The general problem that we are interested in is the scattering of a time-
harmonic incident field by a bounded scatterer D. If the total field is split
into an incident and a scattered field, this can be formulated as a boundary
value problem for the scattered field in the region outside D, consisting of the
Helmholtz equation,

∆W + n(x)2ω2W = 0, x ∈ R
3 \ D̄, (1)

augmented with Dirichlet, Neumann or Robin boundary conditions on the bound-
ary of the scatterer ∂D, and the Sommerfeld radiation condition at infinity. Here
n(x) is the index of refraction, and ω is the angular frequency.

In direct numerical simulations of (1) the accuracy of the solution is deter-
mined by the number of grid points or elements per wave length. The computa-
tional cost to maintain constant accuracy grows algebraically with the frequency,
and for sufficiently high frequencies, a direct numerical simulation is no longer
feasible. Numerical methods based on approximations of (1) are needed.

Fortunately, there exist good such approximations precisely for the difficult
case of high frequency solutions. In free space, a typical high frequency solution
can be approximated by a simple wave,

W (x) ≈ a(x)eiωφ(x), x ∈ R
3 (2)
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where the amplitude a(x) and the phase function φ(x) depend only mildly on
the parameter ω and vary on a much coarser scale than W (x) itself. Geometrical
optics (GO) considers the case when ω → ∞. The frequency then disappears
from the model and the equations can be solved at a computational cost inde-
pendent of ω. GO can be formulated as the partial differential equations for φ
and a. The phase function φ satisfies the eikonal equation,

|∇φ| = n(x), (3)

and the leading order amplitude term a satisfies the transport equation,

2∇φ · ∇a+ ∆φa = 0. (4)

GO can also be formulated in terms of ordinary differential equations (ODE).
It corresponds to solving the eikonal equation (3) through the method of char-
acteristics, i.e. solving the system of ODEs,

dx

dt
= ∇pH(x,p),

dp

dt
= −∇xH(x,p), H(x,p) =

|p|

n(x)
, (5)

where t is time. As long as φ is smooth, the relationship between the models
is given by φ(x(t)) = φ(x(0)) + t. There are also ODEs giving the amplitude
a(x(t)) along the characteristics.

The main drawbacks of the infinite frequency approximation of geometrical
optics are that diffraction effects at boundaries are lost, and that the approxi-
mation breaks down at caustics, where the predicted amplitude a is unbounded.
Geometrical theory of diffraction (GTD), pioneered by J. Keller in 1960s, adds
diffraction effects to the GO approximations. One type of diffracted rays are
creeping rays, which are generated at the shadow line of the scatterer, i.e. where
the incident ray strikes the surface of the scatterer at grazing angle. At this point
the incident ray divides into two parts: one part continues straight on, and a
second part propagates along geodesics on the surface, continuously shedding
diffracted rays in its tangential direction. See Figure 1. In analogy with (2), a
wave field is generated on the surface

Ws(u) = a(u)eiωφ(u), (6)

where φ(u) and a(u) are now the surface phase and amplitude and u ∈ R
2 is

a parameterization of the surface. The creeping rays satisfy a system of ODEs
similar to (5). They are related to (6) in the same way as the standard GO rays
are related to (2).

Creeping rays can give an important contribution to the solution at medium
to high frequencies, for instance in radar cross section (RCS) computations for
low observable objects [3] and in antenna coupling problems [15]. We want to
compute the creeping rays and the associated wave field in (6).

Various methods have been devised to compute the geometrical optics solu-
tion. They can be divided into Lagrangian and Eulerian methods.
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Figure 1: Diffraction by a smooth cylinder. Top figure shows the solution
schematically. The incident field uinc induces a creeping ray uc at the north
(and south) pole of the cylinder, where the incident direction is orthogonal to the
surface normal. As the creeping ray propagates along the surface, it continuously
emits surface-diffracted rays ud with exponentially decreasing initial amplitude.
Bottom figure shows real part of a solution to the Helmholtz equation. The
surface diffracted waves can be seen behind the cylinder.

Lagrangian methods are based on the ODE formulation (5). The simplest
Lagragian method is standard ray tracing where the ODEs in (5) togheter with
ODEs for the amplitude are solved directly with numerical methods for ODEs.
This approach is very common in standard free space GO, [4, 18], but is also done
for the creeping ray case, [12, 21]. Ray tracing gives the phase and amplitude
solution along a ray, and interpolation must be applied to obtain those quantities
everywhere. This can be rather difficult, in particular in regions where rays
cross. Another problem with ray tracing is that it may produce diverging rays
that fail to cover the domain. Even for smooth n(x) there may be shadow zones
where the field is hard to resolve. The interpolation can be simplified by instead
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using so-called wave front methods [28, 11]. They are related to ray tracing,
but instead of individual rays, an interface representing a wave front is evolved
according to the ray equations.

More recently, Eulerian methods based on PDEs have been proposed to
avoid some of the drawbacks of ray tracing. These methods discretize the PDEs
on fixed computational grids to control accuracy everywhere and there is no
need for interpolation. The simplest Eulerian methods solves the eikonal and
transport equations (3,4). This technique has been used in standard GO, [27,
26, 7] and also in the surface case, [14]. However, the eikonal and transport
equations only give the correct solution when it is a single wave of the form
(2). When there are crossing waves, more elaborate schemes must be devised.
In the free space GO case a number of methods have been developed in the
last ten years using different approaches. Many of them are based on a third
formulation of geometrical optics as a kinetic equation set in phase space. They
include “big” raytracing [1], patching together multiple eikonal solutions [2],
moment methods [22, 23, 9], segment projection method [6], level set methods
[20], slowness matching [24], the phase flow method [16] and fast phase space
methods [8]. A survey of this research effort is given in [5].

These more advanced methods have so far not been used for the creeping ray
case. In this paper we propose an adaptation of the fast phase space method
of Fomel and Sethian [8] to this case. This method is computionally expensive
if only a few solutions are computed. It becomes attractive when the solution
is sought for many different sources but with the same index of refraction.
In the creeping ray case this happens for instance when the solution for all
illumination angles of a fixed scatterer is of interest. We consider one such
example: computing the monostatic RCS.

Following [8] we formulate the ray propagation problem as a time-independent
partial differential equation (PDE) in a three-dimensional phase space. We use
a fast marching method to solve the PDE. The PDE solution contains informa-
tion for all incidence angles. The phase and amplitude of the field are extracted
by a fast post-processing. Computationally the cost of solving the PDE is less
than tracing all rays individually. If the surface is discretized by N2 points the
complexity is O(N3 logN), while ray tracing would cost O(N4) if a comparable
number of incidence angles (N2) and rays per angle (N) are considered.

In Section 2, we formulate the governing equations. The numerical method
for solving the equations are discussed in Section 3. In Section 4 we show how
to extract the information for a particular ray through post-processing. An
application to a monostatic RCS problem is shown as an example in Section 5.

2 Governing Equations

For simplicity we consider the case when the scatterer surface has an explicit
parameterization. Let X̄ be a regular hypersurface, representing a scatterer
surface, with the parametric equations X̄ = X̄(u), where X̄ = (x, y, z) ∈ R

3 is
the coordinate in 3D physical space, and the parameters u = (u, v) belong to
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a bounded set Ω ⊂ R
2. Let the scatterer be illuminated by incident rays in a

direction represented by a normalized vector Î = [ı1, ı2, ı3]. The shadow line is
then defined as the set of points where

N̂> Î = 0, (7)

where N̂(u) is the surface normal at X̄(u),

N̂ =
X̄u × X̄v

|X̄u × X̄v|
. (8)

Here the subscripts denote differentiation with respect to u and v. We will
assume that (7) defines a curve in parameter space, which we denote u0(s), and
s is the arc length parameterization.

2.1 Geodesics

We start by deriving the equations for creeping rays, which are indeed geodesics
on the scatterer surface. According to Keller and Lewis [13], the surface phase
satisfies the surface eikonal equation,

|∇̃φ| = n, (9)

where n(u) is the index of refraction at the surface, and ∇̃ is the surface gradient,
defined as

∇̃φ := JG−1∇φ, G = J>J,

with
J = [X̄u X̄v] ∈ R

3×2.

We prescribe boundary conditions for (9) on the shadow line, which acts as the
source for the creeping rays. The boundary condition is that the surface phase
agrees with φinc, the phase of the incoming wave,

φ(u0(s)) = φ0(u0) := φinc(X̄(u0(s))), (10)

To avoid ambiguities as to which direction the surface waves propagate, we add
the condition

∇̃φ(u0(s)) = ∇φinc(X̄(u0(s))), (11)

which is consistent with (9) since φinc satisfies the free space eikonal equation
(3) and with (10) since

d

ds

(

φ(u0(s)) − φinc(X̄(u0(s)))
)

= ∇φ>u′

0 −∇φ>inc

dX̄

ds

= (J>∇̃φ)>u′

0 −∇φ>inc

dX̄

ds
= (∇̃φ−∇φinc)

>
dX̄

ds
.
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In the case when n = 1 and the incoming wave is a plane wave in direction Î,
we have φinc(x) = Î>x. Then (10,11) reduce to

φ0(u0(s)) := Î>X̄(u0(s)), ∇̃φ(u0(s)) = Î . (12)

We can write (9) as a Hamilton-Jacobi equation H(u,∇φ) = 0, with the Hami-
tonian

H(u,p) ≡
1

2
p>G−1(u)p −

n2(u)

2
.

Note that in the case n = constant, the geometrical rays associated with the
eikonal equation (3) becomes straight lines. Analogously, for the surface eikonal
equation (9), the creeping rays for constant n are geodesics, or shortest paths
between two points on the surface. Henceforth, we will assume n ≡ 1 and a
plane incoming wave.

Introducing a parameter τ , the bicharacteristics
(

u(τ),p(τ)
)

are determined
by the solution of the following Hamiltonian equations

u̇ = Hp = G−1p, (13a)

ṗ = −Hu. (13b)

Here the dot denotes differentiation with respect to the parameter τ . At the
shadow line, the initial direction of the geodesic should be parallel to the incident
field. We demand that

d

dτ
X̄(u(τ))

∣

∣

∣

τ=0
= Î .

This implies that p(0) = Gu̇(0) = J>Ju̇(0) = J> ˙̄X(0) = J>Î. The initial
condition for the system (13) therefore reads,

u(0) = u0(s), (14a)

p(0) = p0(s) := J>(u0(s)) Î . (14b)

We note that by (12),

p(0) = J>(u0(s)) ∇̃φ(u0(s)) = J>JG−1∇φ(u0(s)) = ∇φ(u(0)).

As for any Hamiltonian system it therefore follows that

p(τ) = ∇φ(u(τ)), (15)

for all τ ≥ 0, as long as φ is smooth. As a consequence, (13) and (15) give

| ˙̄X | =

∣

∣

∣

∣

dX̄

dτ

∣

∣

∣

∣

= |Ju̇| = |JHp| = |JG−1p| = 1, (16)

and we can identify the parameter τ with arc length along the creeping rays
X̄(u(τ)). In this case, the system of four first-order ODEs (13) can be written
as a system of two second-order equations [13],

ü+ Γ1
11u̇

2 + 2Γ1
12u̇v̇ + Γ1

22v̇
2 = 0, (17a)

v̈ + Γ2
11u̇

2 + 2Γ2
12u̇v̇ + Γ2

22v̇
2 = 0. (17b)
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Here Γk
ij(u) are Christoffel symbols, defined by

Γk
ij =

2
∑

m=1

1

2
gkm[(gjm)i + (gim)j − (gji)m],

where (gij) = G and (gij) = G−1, and subscripts 1 and 2 denote differentiation
with respect to u and v, respectively.

Now if we set u̇ = du
dτ = ρ cos θ and v̇ = dv

dτ = ρ sin θ, then v̇ = u̇ tan θ, and
by differentiating with respect to τ ,

v̈ = ü tan θ + u̇
1

cos2 θ
θ̇. (18)

Moreover by (16),

ρ = ρ(u, v, θ) =
∣

∣

∣J

(

cos θ
sin θ

)

∣

∣

∣

−1

=
∣

∣X̄u cos θ + X̄v sin θ
∣

∣

−1
.

Let γ := (u, v, θ). Using (18), we get

θ̇ = ρ(γ)V(γ),

where

V(γ) := ρ
(

(Γ1
11 cos2 θ + 2Γ1

12 cos θ sin θ + Γ1
22 sin2 θ) sin θ−

(Γ2
11 cos2 θ + 2Γ2

12 cos θ sin θ + Γ2
22 sin2 θ) cos θ

)

.

Therefore the system of ODEs (17), for geodesics, reduces to





u̇
v̇

θ̇



 =





ρ(γ) cos θ
ρ(γ) sin θ
ρ(γ)V(γ)



 =: g(γ). (19)

2.2 Phase and Amplitude

Let us now derive the ODEs for the surface phase φ and amplitude a. As before,
we parametrize the creeping ray with the arc length τ in the physical space. In
the surface field acossiated with the creeping ray (6), the phase function φ(u(τ))
and the amplitude a(u(τ)) of the field vary with the distance τ along the ray.

From (13) and (15) it follows that the phase of the geodesic satisfies the
ODE,

dφ(u(τ))

dτ
= ∇φ · u̇ = ∇φ ·G−1∇φ = |∇̃φ|2 = 1, φ(0) = φ0(u0). (20)

Hence, the phase is the length of the ray.
Now consider a narrow strip of a creeping ray, starting at the incident point

Q0 on the shadow line and propagating along a geodesic on the scatterer surface.
See Figure 2.
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dσ

dττ

Q0

Figure 2: A narrow strip of a creeping ray on the surface.

To determine an equation for the amplitude, we apply the optical form of
energy conservation principle in a small interval from τ to τ + dτ , [17], and get

d

dτ
[a(τ)2 dσ(τ)] = −2α(τ) [a(τ)2 dσ(τ)], (21)

where dσ(τ) is the width of the strip at distance τ from Q0, and α(τ) is an
attenuation factor. Solving (21) gives us

a(τ) = a0(
dσ0

dσ
)

1

2 exp

(

−

∫ τ

0

α(r)dr

)

, (22)

where a0 and dσ0 are the amplitude and strip width at Q0, respectively. There
are thus two parts in this equation which we can treat separately: the atten-
uation, represented by the exponential, and the geometrical spreading of the
creeping ray, represented by dσ

dσ0

.

2.2.1 Attenuation

We will here show that the attenuation can be obtained by solving an ODE
coupled to the geodesic system (19).

The attenuation factor α is given by, [17, 19],

α =
q0
ρg

exp

(

i
π

6

(ωρg

2

)1/3
)

:= ω1/3α̃.

Here q0 ≈ 2.33811 is the smallest positive zero of the Airy function, and ρg

is the radius of curvature of the surface with respect to arc length along the ray
trajectory, given by [10],

ρg =
1

−T̂>DuN̂ u̇
, T̂ =

dX̄

dτ
(u(τ)) = Ju̇.

Here, T̂ is the tangent vector to the surface in the geodesic’s direction, and
DuN̂ = [N̂u N̂v] is the Jacobian of the normal vector N̂ . Note that |T̂ | = 1 by
(16). Since T̂ , N̂ and u̇ are functions of (u, v, θ), so is α̃ = α̃(u, v, θ). We can
therefore add the ODE

dβ

dτ
= α̃(u, v, θ), β(0) = 0, (23)
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Shadow
line

dσ′

0

dσ0

dσ

dσ′

X̃0(s)

X̃(s, τ)

(a)

X̃0s

X̃⊥

0τ

X̃⊥

τ

X̃s

β

β0

(b)

Figure 3: Geometrical spreading of a creeping ray on the surface, starting at
the shadow line and ending at the boundary.

to the geodesic system (19), and then express the attenuation as

exp

(

−

∫ τ

0

α(r)dr

)

= exp
(

−ω1/3β(τ)
)

.

Note that β is independent of the frequency ω.

2.2.2 Geometrical Spreading

To compute the amplitude of the creeping ray from (22), we also need to compute
the geometrical spreading. We consider again a narrow strip of a geodesics, as
in Figure 2, and let dσ0(s) and dσ(s, τ) be the strip width at the shadow line
and at the distance τ from the shadow line, respectively.

Set ũ(s, τ) := u(τ), where (u(τ),p(τ)) is a solution to (13) with the initial
data (14) so that ũ(s, 0) = u0(s). Moreover, let

X̃(s, τ) := X̄
(

ũ(s, τ)
)

.

Then X̃ is the point on the geodesic at the distance τ from the shadow line, and
X̃0(s) = X̃(s, 0) is the starting point on the shadow line. Denote the geometrical
spreading of the creeping ray at the point X̃(s, τ) in the physical space by

Q(s, τ) :=
dσ(s, τ)

dσ0(s)
.

Moreover, let dσ′
0 and dσ′ be the strip width in the direction of the shadow line,

defined by dσ′
0 = |X̃0s| ds and dσ′ = |X̃s| ds. See Figure 3.

Then we have

cosβ0 =
dσ0

dσ′
0

=
X̃⊥

0τ

|X̃⊥
0τ |

·
X̃0s

|X̃0s|
, (24)

cosβ =
dσ

dσ′
=

X̃⊥
τ

|X̃⊥
τ |

·
X̃s

|X̃s|
, (25)
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(u, v)

θ

Θ(U, V )
∂Ω

Figure 4: A geodesic in the parameter space. The function F is defined as
F (u, v, θ) = (U, V,Θ), with the notation as in the figure.

where the τ - and s-subscripts denote differentiation along the ray and the
shadow line, respectively, and X̃⊥

τ is orthogonal to X̃τ in the tangent plane
to the surface. Since |X̃⊥

0τ | = |X̃⊥
τ | = 1 by (16), the geometrical spreading is

then computed as,

Q(s, τ) =
X̃⊥

τ · X̃s

X̃⊥
0τ · X̃0s

. (26)

We will show how to calculate the right hand side of (26) numerically, below.

2.3 Eulerian Formulation

There are a number of drawbacks with Lagrangian methods based on solving
the ODEs (19), (20) and (23). In particular, in the regions where rays diverge or
cross, interpolation can be difficult. Instead, we use an Eulerian formulation and
derive time-independent PDEs, which can be solved on a fixed computational
grid.

We introduce the phase space P = R
2 × S, where S is the periodic sphere.

We consider the triplet γ = (u, v, θ) as a point in this space. The geodesics on
the scatterer are then confined to a subdomain Ωp = Ω× S ⊂ P in phase space.

Let us now introduce an unknown function F : P → P,

F (γ) =





U(γ)
V (γ)
Θ(γ)



 , (27)

which is the point where the geodesic starting at u = (u, v) ∈ Ω with direction
θ ∈ S will cross the boundary of Ωp. See Figure 4. Since F is constant along a
geodesic, we have

0 =
d

dτ
F (u(τ), v(τ), θ(τ)) =

du

dτ
Fu +

dv

dτ
Fv +

dθ

dτ
Fθ. (28)
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Using (28) and (19), we can write the escape PDE for F as

cos θ Fu + sin θ Fv + V(γ)Fθ = 0, γ ∈ Ωp, (29)

with the boundary condition at inflow points, i.e., the points on ∂Ωp at which
geodesics are out-going,

F (γ) = γ, γ ∈ ∂Ωinflow
p .

Note that inflowing characteristics correspond to out-going geodesics.
Now we define a surface phase Φ : P → R, such that Φ(γ) is the distance

traveled by a geodesic starting at the point u with direction θ before it hits the
boundary of Ωp. Using (20), we can derive the PDE for Φ as

cos θΦu + sin θΦv + V(γ)Φθ =
1

ρ(γ)
, γ ∈ Ωp, (30)

with the boundary condition at inflow points

Φ(γ) = 0, γ ∈ ∂Ωinflow
p .

In the same way we define a function B : P → R as the β-value of a geodesic
starting at the point γ ∈ Ωp when it hits the boundary of Ωp. We then use (23)
and derive the PDE for B as

cos θ Bu + sin θ Bv + V(γ)Bθ =
α̃(γ)

ρ(γ)
, γ ∈ Ωp, (31)

with the boundary condition at inflow points

B(γ) = 0, γ ∈ ∂Ωinflow
p .

For the geometrical spreading we consider a fixed shadowline γ0(s) = (u0(s), v0(s), θ0(s))
and like in Section 2.2.2 we define

ũ(s, τ) = u(τ), ṽ(s, τ) = v(τ), θ̃(s, τ) = θ(τ),

where (u, v, θ) solves (19) with initial data (u0(s), v0(s), θ0(s)). Setting γ̃ =
(ũ, ṽ, θ̃) we thus have

γ̃τ = g(γ̃), γ̃(s, 0) = γ0(s),

with g defined in (19).
For a given shadowline, the creeping rays will lie on a submanifold of phase

space P which we define as L(γ0) = {γ̃(s, τ) : τ ≥ 0}. We then introduce the
function Q : L(γ0) → R as

Q(γ̃(s, τ)) := Q(s, τ).

which is a Eulerian version of the geometrical spreading, restricted to L(γ0).
We will use the following simple Lemma.
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Lemma 1. The Jacobian DγF (γ) ∈ R
3×3 has rank two for all γ ∈ Ωp where it

is well-defined. Its null space is spanned by g(γ).

Proof. ThatDγF (γ)g(γ) = 0 is just a restatement of (29). SupposeDγF (γ)v =
0 and construct a curve γ0(s) ⊂ P satisfying γ0(0) = γ and γ′0(0) = v. Let γ̃(s, τ)
be defined for this curve in the same way as above. Then d

dsF (γ0(s)) = 0 for
s = 0. Moreover, since DγF (γ) is well-defined there is a differentiable function
τ̂(s) such that F (γ0(s)) = γ̃(s, τ̂(s)) in a neighborhood of s = 0. Together this
means that

0 =
d

ds
γ̃(s, τ̂ (s))

∣

∣

∣

s=0
= γ̃s(0, τ̂(0)) + τ̂ ′(0)γ̃τ (0, τ̂(0)). (32)

Since −τ̂ ′(0)γ̃τ (0, τ) is a solution to the ODE (γ̃s)τ = Dγg(γ̃)γ̃s for s = 0,
uniqueness of ODE solutions implies that (32) holds for all τ ≥ 0, in particular

γ̃s(0, 0) + τ̂ ′(0)γ̃τ (0, 0) = 0 ⇔ v = −τ̂ ′(0)g(γ).

Hence, if v is in the nullspace, then it is parallel to g(γ), and the nullspace is
thus one-dimensional.

In order to compute Q we first find a solution z = z(s, τ) to

DγF (γ̃)z =
d

ds
F (γ0(s)). (33)

We note that F (γ̃(s, τ)) = F (γ0(s)) for all τ ≥ 0, so this z satisfies

DγF (γ̃)z = DγF (γ̃)γ̃s.

By Lemma 1 we therefore get

z(s, τ) = γ̃s + αg(γ̃) = γ̃s + αγ̃τ ,

for some α and since X̃τ = T̂ (γ̃) by (16), we have

[T̂ (γ̃) × N̂(ũ, ṽ)]>J(ũ, ṽ)z = X̃⊥

τ · (X̃s + αX̃τ ) = X̃⊥

τ · X̃s.

Consequently, since T̂ (γ0(s)) = Î,

Q(γ̃) =
[T̂ (γ̃) × N̂(ũ, ṽ)]>J(ũ, ṽ)z

[Î × N̂(u0(s))]>X̃0s(s)
. (34)

On the boundary, when γ̃ ∈ ∂Ωp we can simplify the computation and avoid

solving for z in (33). Let X̂ : R → R
3 be defined by X̂(s) := X̄(U(γ0(s)), V (γ0(s)))

with U, V defined in (27). As in the proof of Lemma 1 there is a function τ̂ (s)
such that

X̂(s) = X̃(s, τ̂ (s)). (35)

After differentiating (35) with respect to s, we get

X̂s(s) = X̃τ τ̂
′(s) + X̃s.
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Therefore, for γ̃ on the boundary, i.e. γ̃ = F (γ0),

Q(γ̃) =
[T̂ (γ̃) × N̂(ũ, ṽ)]>X̂s(s)

[Î × N̂(u0(s))]>X̃0s

. (36)

Note that X̂s(s) can easily be computed from the numerical solution to the PDE
(29).

3 Numerical Solution of the PDEs

All PDEs (29), (30), and (31) are of the general form

afu + bfv + cfθ = d(u, v, θ), (37)

which are time-independent hyperbolic equations.
In the phase space P, the direction of characteristics at the points on the

boundary determines if boundary conditions are needed at that point. We
assign boundary conditions at the points where a characteristic is in-going. For
example a characteristic is in-going if u̇ = ρ cos θ > 0 on the left boundary and
if v̇ = ρ sin θ > 0 on the lower boundary. More precisely, suppose Ω is the unit
square and −π < θ ≤ π. Then we prescribe boundary condition on ∂Ωinflow

p

given by

∂Ωinflow
p =

{

u = 0, |θ| <
π

2

}

⋃

{

u = 1, |θ − π| <
π

2

}

⋃

{v = 0, θ > 0}
⋃

{v = 1, θ < 0} .

We always use periodic boundary conditions in the θ direction.
To solve these equations, we use a Fast Marching algorithm, given by Fomel

and Sethian [8]. We let f = (F,Φ, B) and discretize the phase space domain
Ωp = Ω×S uniformly, setting ui = i∆u, vj = j∆v and θk = k∆θ, with the step
sizes ∆u = ∆v = 1

N and ∆θ = 2π
N . Then by solving the PDEs (37), we get the

approximate solution

fijk = (Fijk ,Φijk, Bijk) ≈ (F (ui, vj , θk),Φ(ui, vj , θk), B(ui, vj , θk)).

The complexity is O(N3 logN). See [8] for more details.

4 Post-Processing

To extract properties like phase and amplitude for a ray family, post-processing
of the solution to the escape PDEs (37) is needed. It is based on the following
simple observation. By the uniqueness of solutions of ODEs,

F (γ1) = F (γ2),

if and only if the points γ1 and γ2 lie on the same geodesic.
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As an example, suppose we want to compute the surface phase at a point
on the scatterer, when the scatterer is illuminated. We assume that the shadow
line γ0(s) = (u0(s), v0(s), θ0(s)) is known. For each point (u, v) ∈ Ω covered by
the surface wave there is at least one creeping ray passing that point starting
at the shadowline γ0(s). By the argument above, we can thus find s = s∗(u, v)
and phase angle θ = θ∗(u, v), as the solution to

F (γ0(s)) = F (u, v, θ). (38)

The phase at (u, v) is then given by

φ(u, v) = φ0(u0(s
∗)) + Φ(γ0(s

∗)) − Φ(γ∗), γ∗ = (u, v, θ∗),

with φ0 as in (12). Note that γ∗ is now in the submanifold L(γ0) which was
defined in Section 2.3. There may be multiple solutions (s∗, θ∗) to (38), giving
multiple phases.

We now introduce a function A : L(γ0) → R as the amplitude at the point
γ ∈ L(γ0) on the geodesic starting at the shadowline γ0(s). By (22) we can
write

A(γ∗) = A0Q(γ∗)
−1

2 exp
(

−ω
1

3 (B(γ0(s
∗)) −B(γ∗))

)

,

where A0 is the amplitude at the point γ0(s
∗), and Q(γ∗) is computed by (34).

The main difficulty here is to solve (38). We now show how to solve it. Since
F = (U, V,Θ) is a point on the phase space boundary ∂Ωp, it can be reduced
to a point (S,Θ) in R

2. For example in a rectangular domain Ω, Figure 5, we
choose S ∈ [0, 2π] along ∂Ω to be zero at the lower left corner, π at the upper
right corner, and 2π again at the lower left corner. Now the left and right hand
sides of (38) are curves in R

2 parameterized by s and θ, and solving the algebraic
equation (38) amounts to finding crossing points of these curves. See Figure 5.

Numerically, we discretize the parameterization of the shadow line in N grid
points {sm}, m = 1, . . . , N . For each point {u0(sm)} on the parameter space
shadow line, the ray direction θ0(sm) at the shadow line is computed using the
fact that the tangential vector T̂ to the hypersurface at the point γ0(sm) should
be in the same direction as the incident angle Î:

T̂ (γ0(sm)) = Î . (39)

After obtaining the discretized phase space shadow line {γ0(sm)}, we then in-
terpolate the approximate solution fijk (available on a regular grid) to find the
approximate solution on the shadow line:

f̃sm
= (F̃sm

, Φ̃sm
, B̃sm

) ≈ (F (γ0(sm)),Φ(γ0(sm)), B(γ0(sm))).

Having the discretized solution on the shadowline and at the point (u, v) ∈ Ω
for all N directions θ ∈ [0, 2π], we then need to find crossing points of two
complex lines of N straight line segments. These crossing points will then be the
solutions to (38). The amount of work to do this is proportional to N , by using
a monotonic sections algorithm; see e.g. [25]. For all N2 points on the surface
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S = 3π/2

S = 2π

(u, v)

(U, V )

θ

θ

s

S

Θ

Figure 5: Left figure shows a geodesic in a rectangular domain in the parameter
space and the choice of S on the boundary. Right figure shows two crossing
curves. One curve is for all points on the shadowline, parameterized by s. The
other curve is for a single point in the parameter space with all directions,
parameterized by θ.

the computational cost for finding crossing points will then be O(N3). The
complexity to solve the PDEs using the Fast Marching method is O(N3 logN).
Therefore the total complexity will be O(N3 logN).

If we only need to compute the field for one shadow line, it could be done
faster. For example by using wave front tracking or solvers based on the surface
eikonal equation, the complexity is O(N2). But there are applications when we
need the field for many shadow lines. In such cases, using the Fast Marching
method can be much faster. We will show one such application in the next
section.

As an example, in Figure 6, the iso-phase curves are shown for an ellipsoid
illuminated by incident rays in direction Î = [0, 1, 0]. In the shadow zone be-
tween the two shadow lines, there are either one, two or three phases. As it can
be seen, multiple phases can be captured. The solution here is computed by the
Fast Marching method on a 1203 grid and using the post-processing described
above.

5 An Application to Monostatic RCS Compu-

tations

Monostatic RCS is a measure of backscattered radiation in the direction of
incident waves, when an object is irradiated. Normally most part of it consists
of direct reflections, but for not too high frequencies there are situations where
creeping rays can give important contribution [3]. The rays that propagate on
the surface of the scatterer and return in the opposite direction of incident waves
are called backscattered creeping rays.
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Figure 6: Ray propagation on the shadow zone of an ellipsoid. Top figures show
the creeping rays (left) and iso-phase curves (right) in the parameter space
between two shadow lines. Bottom figure shows the iso-phase curves and the
shadow line (bold) in the physical space.

In this section we apply the fast phase space method on a scattering problem
and compute the contribution of the backscattered creeping rays to RCS. We
compare the results with standard ray tracing.

5.1 Scattering Problem

As a test case we consider a hypersurface X̄ = X̄(u, v) which is a patch of an
ellipsoid with the following parametric equations:

x = −r1 cosu,

y = r2 sinu cos v,

z = r3 sinu sin v,

where r1 = 2, r2 = 1, and r3 = 0.5 are the ellipsoid’s semiaxes. Notice that in
order to avoid the unregularity at the points (±r1, 0, 0), we cut off these points
from the parameter space.
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Figure 7: Shadow line in the physical and parameter space.

First, we need to compute the shadow lines on the scatterer. For this hy-
persurface we can find them analytically. By (7) and (8), the shadow line
corresponding to the incident direction Î = [ı1, ı2, ı3] is given by

ı1r2r3 cosu0(s) − ı2r1r3 sinu0(s) cos v0(s) − ı3r1r2 sinu0(s) sin v0(s) = 0.

The ray directions θ0(s) at the shadow line are then computed using (39). For
example, in Figure 7 the shadow line is shown for Î ‖ [0.9, 1, 0.1] in physical and
parameter space, respectively.

5.2 Finding the Backscattered Rays

The goal is to find the length and amplitude of the backscattered creeping rays
for different incident angles. In order to find the backscattered creeping rays,
we use postprocessing as before. A backscattered ray starting at point s1 and
ending at point s2 on shadow line should satisfy

F (γ(s1)) = F (γ(s2)) + C, (40)

where the constant C acounts for the fact that the upper and lower boundaries
in the parameter space coincide on the hypersurface. It means that the points
with S = π, . . . , 3π/2 should be changed to S = π/2, . . . , 0 and at the same time
their Θ values should be added by π. The reason for adding by π is that we
need to reverse the direction of the geodesic starting at s2. Notice that we only
consider the geodesics which hit the upper and lower boundaries, because the
left and right boundaries are indeed artificial boundaries, introduced to avoid
the unregularity.
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Figure 8: Right figure shows all creeping rays starting at the shadow line
(dashed) and ending at the boundary. The two bold curves are the backscat-
tered ray. Left figure shows two curves corresponding to the rays hitting the top
and bottom boundaries in the parameter space. Circles denote the values com-
puted by the Fast Marching method and solid lines denote the values computed
by a high order accurate ray tracing method. The crossing point corresponds
to the backscattered ray.

As before, the right and left hand sides of (40) are curves in R
2 parameterized

by s, and to find the backscattered ray we need to find crossing points of these
curves. Figure 8(a) shows the intersecting curves in the (S,Θ)-plane for the
points on the shadow line corresponding to geodesics hitting the lower and
upper boundaries in parameter space, c.f. Figure 5. Figure 8(b) shows the
creeping rays starting at all N points on the shadow line and the backscattered
ray (bold line).

5.3 Length and Amplitude of Backscattered Ray

The length and amplitude of the backscattered creeping rays are computed by
a third order interpolation of the solution to the PDEs (37). Figure 9 shows the
length for different incident angles. Figure 10 shows the amplitude for different
incident angles and two different frequencies. Note that for computing the
amplitude, we only need to compute the geometrical spreading and attenuation
of a backscattered creeping ray at the boundary. Therefore we can use the
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Figure 9: Length of the backscattered creeping rays for many illumination an-
gles.

simplified formulation (36). In fact,

A(γ(s2)) = A(γ(s1))

(

Q(F (γ(s2)))

Q(F (γ(s1)))

)
1

2

exp
(

−ω
1

3 (B(γ(s1)) +B(γ(s2)))
)

,

For a given incident direction Î = [ı1, ı2, ı3], the horizontal and vertical incident
angles are calculated as

ψ1 = arctan(
ı1
ı2

), ψ2 = arctan(
ı3
ı2

).

They vary from −60 to 60 degrees. Figure 11 shows the backscattered creeping
rays in th physical and parameter space for four different incident directions.

5.4 Convergence and Complexity

We use a first order Fast Marching algorithm. Figure 12 shows the length
Φ(u, π, π/2) obtained using a coarse mesh of the size 603 and a fine mesh of the
size 1203. We compare the solution with a reference solution obtained by a high
order accurate Ray tracing method. It confirms the first order accuracy of the
Fast Marching algorithm.

The convergence of the length and amplitude (at ω = 1) of the backscattered
creeping ray is shown in Figure 13 for a fixed vertical incident angle ψ2 = 6
degree and different horizontal incident angles ψ1.

The complexity of using the fast phase space method proposed here consists
of two parts. First, the cost of solving the PDEs by the Fast Marching method
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(b) Amplitude, ω = 20

Figure 10: Amplitude of the backscattered creeping rays for many illumination
angles and two different frequencies. The frequency determines the balance
between the effects of geometrical spreading and attenuation.

20



0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

u

v

(a) ψ1 = 0, ψ2 = 0, length = 2.44, a1 = 0.017, a20 = 1.6 · 10−5
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(b) ψ1 = 0, ψ2 = 56, length = 2.43, a1 = 0.021, a20 = 1.9 · 10−5
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(c) ψ1 = 58, ψ2 = 0, length = 2.89, a1 = 0.017, a20 = 1.6 · 10−5
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(d) ψ1 = 58, ψ2 = 56, length = 2.16, a1 = 0.032, a20 = 3.6 · 10−5

Figure 11: The backscattered creeping rays for four different illumination angles
and two different frequencies. Left figures show the backscattered rays in the
physical space by bold solid lines. The view direction is in the illumination
direction, so that the shadow line is the outer most curve around the ellipsoid.
Right figures show the backscattered rays in the parameter space. Shadow lines
here are shown by dashed lines. The amplitudes for ω = 1 and ω = 20 are
denoted by a1 and a20, respectively.
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Figure 12: the length Φ(u, π, π
2 ) obtained using Fast Marching on a coarse and

fine grid. They converge to a reference solution obtanied by a high order solver
using Ray tracing.

is O(N3 logN). Second, the cost of finding the backscattered rays for each
shadow line is O(N). For all N2 shadow lines, it is O(N3). Therefore the total
complexity will be O(N3 logN). The total cost by using other methods, like
wave front tracking and solvers based on the surface eikonal equation, will be
O(N4), if the cost for each shadow line is O(N2). In this case, using the Fast
Marching method will then be much faster.
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