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Numerical methods

• Direct methods

– Wave equation (time domain)

– Integral equation methods (frequency domain)

• Asymptotic methods

– Physical optics

– Geometrical optics

– (Gaussian beams)

• Hybrid methods



Direct numerical methods for the wave equation

Scalar wave equation

utt − c(x)2Δu = 0, (t, x) ∈ R
+ × Ω, Ω ⊂ R

d

+ boundary and initial data.

• Discretize Ω, time and u.

• Many methods: FD (explicit, uniform staggered grids), FV,
FEM (implicit or DG).

• Complexity O(ω(1/p+1)(d+1)) (including time).

• Issues: First/second order system. Treatment of
boundaries/interfaces. Phase errors.



Direct integral equation methods for Helmholtz

Scattering problem for Helmholtz equation: u = us + uinc, c ≡ 1

Δus + ω2us = 0, x ∈ R
d \ Ω̄,

us = −uinc, x ∈ ∂Ω + radiation condition

Rewrite as integral equation, e.g.

uinc(x) = −
∮

∂Ω

G(ω|x − x′|)∂u(x′)
∂n

dx′, ∀x ∈ ∂Ω.

Discretize ∂Ω and ∂u
∂n ⇒ O(ωd−1) unknowns.

Finite element/collocation methods, ”method of moments”.

Full matrix equation, direct solution, complexity O(ω3(d−1)).

Fast multipole methods, iterative solver, complexity ≈ O(ω(d−1)).

Issues: 1st/2nd kind Fredholm equations. Conditioning. Corners.



Physical optics

Integral formulation of scattering problem

us(x) =
∮

∂Ω

G(ω|x − x′|)∂u(x′)
∂n

dx′, x ∈ R
d \ Ω,

Approximate ∂u
∂n by geometrical optics solution.

E.g. if uinc = exp(iωα · x) is a plane wave, Ω convex, then

∂u

∂n
≈ ∂(uinc + uGO

s )
∂n

=

⎧⎨
⎩

2iωα · n̂(x)eiωα·x, x illuminated,

0, x in shadow.

Cost of computing solution still depends on ω.

”Exact PO”
∂u

∂n
= A(x, ω)eiωα·x/ω

then A(x, ω) smooth, uniformly in ω, except at shadow boundaries.

Discretize and solve A(x, ω) at cost independent of ω. [Bruno]



Geometrical optics models and numerical methods
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Eikonal equation

• Time-dependent version.

Wave equation plus ansatz u(t, x) ≈ A(t, x)eiωφ(t,x) give

φt + c(x)|∇φ| = 0.

Upwind, high-resolution (ENO, WENO) finite difference
methods [Osher, Shu, et al]

• Stationary version.

Helmholtz equation plus ansatz u(x) ≈ A(x)eiωϕ(x) give

|∇ϕ| = c(x)−1.

Fast marching [Sethian] or fast sweeping methods [Zhao, Tsai,
et al].

(Note, if IC and BC match, φ = ϕ − t.)



Eikonal equation

• Ansatz only treats one wave. In general crossing waves

u(x) ≈ A1(x)eiωϕ1(x) + A2(x)eiωϕ2(x) + · · ·

• Nonlinear equation, no superposition principle

• Viscosity solution, kinks

• First arrival property: ϕvisc(x) = minn ϕn(x)



Example: Eikonal solution
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Ray tracing

Rays are the (bi)characteristics (x(t), p(t)) of the eikonal equation,
given by ODEs

dx

dt
= c(x)2p,

dp

dt
= −∇c(x)

c(x)
,

Hamiltonian system with H = c(x)|p| and H ≡ 1.

Solve with numerical ODE methods, e.g. Runge Kutta.

Note, if valid at t = 0, then for all t > 0:

• ϕ(x(t)) = t, (phase ∼ traveltime)

• ∇ϕ(x(t)) = p(t), (local ray direction)

• |p(t)| = 1/c(x(t)), (H = 1 conserved, can reduce to p ∈ S
d−1)

There are also ODEs for the amplitude along rays.

Issues: Diverging rays. Interpolation onto regular grid.



Example: Ray/Wavefront solutions



Ray tracing boundary value problem

Start and endpoint of ray given.

- Piecewise constant c(x)

Rays piecewise straight lines. Find refraction/reflection points
at interfaces by Newton’s method.

- Smoothly varying c(x)

Ray tracing eq is a nonlinear elliptic boundary value problem

d

dt

(
c(x)−2 dx

dt

)
= −∇c(x)

c(x)
,

x(0) = x0,

x(t∗) = x1.

t∗ additional unknown.

Solve by shooting method or discretize PDE + Newton.

Multiple solutions difficult.



Wavefront tracking

Directly solve for wavefront given by ϕ(x) = const.

Suppose γ(α) is the initial wavefront, ϕ(γ(α)) = 0.

Follow ensemble of rays

∂x(t, α)

∂t
= c2p, x(0, α) = γ(α),

∂p(t, α)

∂t
= −∇c

c
, p(0, α) =

γ′(α)⊥

c|γ′(α)| .

Note: Moving front in normal direction a possibility

xt = c
x⊥

α

|xα| (since 0 = ∂αϕ(x(t, α)) = xα · ∇φ = xα · p)

But not good since wavefront non-smooth!



Phase space

Phase space (x, p), where p ∈ S
d−1 is local ray direction

Observation: Wavefront is a smooth curve in phase space.

• 2D problems: 1D curve in 3D phase space (x, y, θ).

• 3D problems: 2D surface in 5D phase space (x, y, z, θ, α).
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x y
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x y
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Wavefront construction

Propagate Lagrangian markers on the wavefront in phase space.

Insert new markers adaptively by interpolation when front
resolution deteriorates.

Interpolate traveltime/phase/amplitude onto regular grid.

[Vinje, Iversen, Gjöystdal, Lambaré, . . . ]



Geometrical optics models and numerical methods
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Kinetic formulation

Let f(t, x, p) be the particle (photon) density in phase space.
Bicharacteristic equations ⇒

ft + c2p · ∇xf − ∇c

c
· ∇pf = 0.

f supported on |p| = c(x)−1, (H ≡ 1).

Can also be derived directly from wave eq. through e.g. Wigner
measures [Tartar, Lions, Paul, Gerard, Mauser, Markowich,
Poupaud, . . . ]

Relationship to wave equation solution:

u = Aeiωφ ∼ f = A2δ (p −∇φ) .

Note: Loss of phase information.



Moment equations

• Derived from transport equation in phase space + closure
assumption for a system of equations representing the
moments. (C.f. hydrodynamic limit from Boltzmann eq.)

• PDE description in the “small” (t, x)-space.

• Arbitrary good superposition. N crossing waves allowed. (But
larger N means a larger system of PDEs must be solved.)

[Brenier, Corrias, Engquist, OR] (wave equation),

[Gosse, Jin, Li, Markowich, Sparber] (Schrödinger)



Derivations, homogenous case (c ≡ 1)

Starting point is
ft + p · ∇xf = 0.

Let p = (p1, p2). Define the moments,

mij =
∫

R2
pi
1p

j
2fdp.

From ∫
R2

pi
1p

j
2(ft + p · ∇xf)dp = 0,

we get the infinite (valid ∀i, j ≥ 0) system of moment equations

(mij)t + (mi+1,j)x + (mi,j+1)y = 0.



Derivations, homogenous case, cont.

Make the closure assumption

f(x, p, t) =
N∑

k=1

A2
k · δ(|p| − 1, arg p − θk).

The moments take the form

mij =
N∑

k=1

A2
k cosi θk sinj θk.

Corresponds to a maximum of N waves at each point.

Choose equations for moments m2k−1,0 and m0,2k−1, k = 1, . . . , N .

Gives closed system of 2N equations with 2N unknowns (the Ak’s
and θk’s).



Moment equations, examples

Ex. N = 1
⎛
⎝u1

u2

⎞
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t

+

⎛
⎜⎝

u2
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2
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x
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u2
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u2
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2

⎞
⎟⎠

y

= 0.

where u1 = m10 = A2 cos θ and u2 = m01 = A2 sin θ.

For N ≥ 2,
F 0(u)t + F 1(u)x + F 2(u)y = 0.

where F 0(u), F 1(u) and F 2(u) are complicated non-linear
functions.

• PDE = weakly hyperbolic system of conservation laws, (with
source terms when c varies)

• Flux functions in conservation law can be difficult to evaluate.



Wedge example
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Hybrid methods

• Full Helmholtz or wave equa-

tion where variations in c(x) and/or

geometry on same scale as wave-

length.

• GO elsewhere, typically for long

range interactions.

Ex. antenna + aircraft.

Ω2

1Ω

xi

Coupling of models.



Other methods

• Hamilton–Jacobi methods
[Vidale, van Trier, Symes, Engquist, Fatemi, Osher, Benamou,. . . ]

• Wavefront tracking using level sets in phase space
[Osher, Tsai, Cheng, Liu, Jin, Qian, . . . ]

• Wavefront tracking using segment projection
[Engquist, OR, Tornberg]

• Full phase space methods
[Sethian, Fomel, Symes, Qian]


