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Main sujet: mixing in time-independent random media as a

source of kinetics.

1. Wave equation and kinetic models – a brief review.
2. Diffusion in the regime of random geometric optics:
from waves to rays,
from rays to ray direction diffusion,
from ray direction diffusion to position diffusion.
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The Main Culprits

The wave equation:
1

c2(x)
φtt −∆φ = 0

The radiative transport equation:

wt + c0k̂ · ∇xw =
∫

σ(k, p)δ(c0|k| − c0|p|)[w(t, x, p)− w(t, x, k)]dp

The Liouville equation (geometrical optics):

wt +∇kω(x, k) · ∇xw −∇xω(x, k) · ∇kw = 0, ω(x, k) = c(x)|k|.
The Fokker-Planck equation (ray diffusion):

wt + c0k̂ · ∇xw = ∂
∂km

(
Dmn(k)

∂w
∂kn

)
.

The diffusion equation (spatial diffusion):

wt = D(|k|)∆xw.

Scales: λ – wave length, lcor – correlation length, lsc – scattering mean

free path, L – propagation distance.

3



From the wave equation to kinetic models
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The Wigner transform

Wε(t, x, k) =
∫

eik·yφε

(
t, x−

εy

2

)
φ̄ε

(
t, x +

εy

2

)
dy

(2π)d

Basic properties: φε → 0 weakly, but Wε is less oscillatory

(i)
∫

Wε(t, x, k)dk = |φε(t, x)|2dx.

(ii) Wε(t, x, k) converges to a measure W (t, x, k) ≥ 0 in S ′(R2d).

(iii) If φε oscillates on scales not smaller than ε then energy is captured

correctly: |φε(t, x, )|2 →
∫

W (t, x, k)dk.

Examples.

(i) WKB: φε(x) = A(x)eiS(x)/ε, then W (x, k) = |A(x)|2δ(k −∇S)

(ii) Localized data: φε(x) =
1

εd/2
φ

(
x

ε

)
then W (x, k) = |φ̂(k)|2δ(x).
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Path #1: Waves-RTE-Diffusion

Quantum waves to radiative transport

iε
∂φ

∂t
+

ε2

2
∆φ−

√
εV

(
x

ε

)
φ = 0, ε � 1.

V (y) – spatially homogeneous mean-zero random process with a corre-

lation function R(x) = 〈V (y)V (x + y).

Weak fluctuations: σ ∼
√

ε and lcor ≈ λ � L, ε = λ/L.

The Wigner transform:

Wε(t, x, k) =
∫

eik·yφ

(
t, x−

εy

2

)
φ̄

(
t, x +

εy

2

)
dy

(2π)d
→ W (t, x, k) ≥ 0.

The radiative transport equation:

∂W

∂t
+ k · ∇xW =

∫
R̂(p− k)δ

(
k2

2
−

p2

2

)
(W (t, x, p)−W (t, x, k))

dp

(2π)d−1
.

Spohn (1977) – small times convergence,

Erdös-Yau (2001), 65pp. – global in time convergence

All methods based on diagrammatic expansions and Duhamel’s formula.
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Classical waves to radiative transport

Start with the wave equation

1

c2(x)

∂2φ

∂t2
−∆φ = 0

with c(x) = c0(1 +
√

εc(x/ε)) – again σ =
√

ε, λ/L = lcor/L = ε = σ2.

End up with the radiative transport equation

Wt + c0k̂ · ∇xW =
∫

σ(k, p)δ(c0|k| − c0|p|)(W (t, x, p)−W (t, x, k))dp.

Physical literature – too numerous (1960’s-1990’s)

Formal: R., Papanicolaou, Keller (1996); Powell, Vanneste (2005); Bal

(2005) – no rigorous results.

Mathematical: Lukkarinen, Spohn (2005), 71 pp. – the discrete case,

ω(k) ≥ ω0 > 0 – rigorous but the true wave equation is excluded – based

on diagrammatic expansions
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Radiative transport to diffusion

Solution of the radiative transport equation

Wt + c0k̂ · ∇xW =
∫

σ(k, p)δ(c0|k| − c0|p|)(W (t, x, p)−W (t, x, k))dp.

converges in the large time – large distance limit to solution of the dif-

fusion equation

W̄t = D∆xW̄ .

Can we go in one step?

Quantum waves directly to diffusion

Erdös, Salmhofer and Yau (2005), 124 pp.: Start with

i
∂φ

∂t
+

1

2
∆φ−

√
εV (x)φ = 0

then on time-scales T ∼ ε−1−2α and X ∼ ε−1−α, 0 < α < 1/2000, the

Wigner transform converges to the solution of the diffusion equation.

Better control of diagrammatic expansions.
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Difficulties of path #1:

(i) time-independent media – correlations with the past;

(ii) waves are not local objects.

Remedies:

(i) adopt the parabolic approximation – waves always march forward and

see a new medium – math becomes easy but approximation is uncon-

trolled.

(ii) do random geometric optics – waves become local objects, can use

characteristics and particle methods – math is not very easy but easier

and approximation is controlled. Price: where is my phase?
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Route #2 from waves to diffusion - each step with an error bound

ε = λ/L, δ = lcor/L, γ = lsc/L: need ε � δ � γ � 1.
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Level 1. Wave equation

1

c2
φtt −∆φ = 0.

High frequency limit ⇒
Level 2. The Liouville equation

wt +∇kω(x, k) · ∇xw −∇xω(x, k) · ∇kw = 0

with ω(x, k) = [c0 +
√

δc1(x/δ)]|k|. Large propagation distance δ → 0 ⇒
Level 3. The Fokker-Planck equation (ray diffusion)

w̄t + c0k̂ · ∇xw̄ =
∂

∂kn

(
Dnm(k)

∂w̄

∂km

)
.

Large propagation distance – large time limit ⇒
Level 4. The diffusion equation

ut = D∆xu.
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Step 1: from the wave equation to the Liouville equations (Lions-Paul,

GMMP, KPR)

Start with the acoustic system in dimension d ≥ 3 with the sound speed

cδ(x) = c0 +
√

δc1

(
x

δ

)
.

∂u

∂t
+∇ (cδ(x)p) = 0

∂p

∂t
+ cδ(x)∇ · u = 0.

Denote v = (u, p) ∈ Rd+1 and write

Aδ(x) = diag(1,1,1, cδ(x)), and Dj = ej ⊗ ed+1 + ed+1 ⊗ ej, j = 1, . . . , d.

Here em ∈ Rd+1 is the standard orthonormal basis: (em)k = δmk, the

acoustic system is

∂v

∂t
+

d∑
j=1

Aδ(x)Dj ∂

∂xj
(Aδ(x)v(x)) = 0.
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The initial data: a mixture of states, oscillating on scale ε � δ, e.g. WKB

v(0,x) = A(x)eiS(x)/ε or localized – vε(0,x) = ε−d/2v0(x/ε). The wave

length ε is much smaller than the correlation length δ of the medium:

ε � δ � 1.

The dispersion matrix:

P δ
0(x,k) = i

d∑
j=1

Aδ(x)kjD
jAδ(x) = i

d∑
j=1

cδ(x)kjD
j.

The self-adjoint matrix (−iP δ
0) has an eigenvalue ω0 = 0 of the multiplic-

ity d−1, and two simple eigenvalues ωδ
±(x,k) = ±cδ(x)|k|. Its eigenvectors

are

b0
m =

(
k⊥m,0

)
, m = 1, . . . , d− 1; b± =

1√
2

(
k̃

|k|
± ed+1

)
,

where k⊥m ∈ Rd is the orthonormal basis of vectors orthogonal to k.
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The (d + 1)× (d + 1) Wigner matrix of a mixture of solutions is

W δ
ε (t,x,k) =

1

(2π)d

∫
Rd

∫
S

eik·yvδ
ε(t,x−

εy

2
; ζ)⊗ vδ∗

ε (t,x +
εy

2
; ζ)dyµ(dζ).

It is well-known that for each fixed δ > 0 W δ
ε (t) converges weakly to

Uδ(t,x,k) = uδ
+(t,x,k)b+(k)⊗ b+(k) + uδ

−(t,x,k)b−(k)⊗ b−(k).

The scalar amplitudes uδ = u
(δ)
+ satisfy the Liouville equations:

∂tu
δ +∇kHδ · ∇xuδ −∇xHδ · ∇kuδ = 0, Hδ(x,k) = cδ(x)|k|.

One may obtain an L2-error estimate for this convergence with a mixture

of states. In order to make the scale separation ε � δ � 1 precise we

define the set

Kµ :=
{
(ε, δ) : | ln ε|−2/3+µ ≤ δ ≤ 1

}
.

The parameter µ is a fixed number in the interval (0,2/3).
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Proposition. (Mundane estimates) Let the acoustic speed cδ(x) =

c0 +
√

δc1(x/δ) with a nice function c1(y). Assume that the initial data

W δ
ε (0,x,k) → W0(x,k) strongly in L2(Rd × Rd) as Kµ 3 (ε, δ) → 0. Also

assume that the limit W0 ∈ C2
c (R2d

∗ ) with a support inside 0 < α ≤ |k| ≤
β < +∞, and is of the form

W0(x,k) =
∑

q=±
u0

q (x,k)Πq(k), Πq(k) = bq(k)⊗ bq(k).

Let Uδ(t,x,k) =
∑

p=±
uδ

p(t,x,k)Πp(k), where the functions uδ
p satisfy the

Liouville equations. Then there exists a constant C1 > 0 that is indepen-

dent of δ so that

‖W δ
ε (t,x,k)− Uδ(t,x,k)‖2 ≤ C(δ)

(
ε‖W0‖H2e

C1t/δ3/2
+ ε2‖W0‖H3e

C1t/δ3/2
)

+‖W δ
ε (0)−W0‖2,

where C(δ) is a rational function of δ with deterministic coefficients.
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The main result: from the Liouville equation to the spatial diffusion

equation

∂w

∂t
=

d∑
m,n=1

amn(k)
∂2w

∂xn∂xm
,

with the diffusion matrix anm(k) =
c0

Γd−1

∫
Sd−1

lnχm(kl)dΩ(l), and the func-

tions χj above are the mean-zero solutions of

d∑
m,n=1

∂

∂km

(
k2Dmn(k̂)

∂χj

∂kn

)
= −c0k̂j.

Suppose also that u±0 ∈ C3
c (R2d

∗ ) and supp u±0 ⊆ A(M). Let

W0(x,k) := u0
+(x,k)b+(k)⊗ b+(k) + u0

−(x,k)b−(k)⊗ b−(k),

W (t,x,k) := w+(t,x;k)b+(k)⊗ b+(k) + w−(t,x;k)b−(k)⊗ b−(k).
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Theorem. Let Kµ,ρ :=
{
(ε, δ, γ) : δ ≥ | ln ε|−2/3+µ and γ ≥ δρ

}
, with 0 <

µ < 2/3, ρ ∈ (0,1). Assume that the dimension d ≥ 3. Suppose for some

0 < µ < 2/3, ρ ∈ (0,1) we have initially

∫
R2d

∣∣∣∣∣EW δ
ε

(
0,

x

γ
,k

)
−W0(x,k)

∣∣∣∣∣
2

dxdk → 0, as (ε, δ, γ) → 0 and (ε, δ, γ) ∈ Kµ,ρ.

Then, there exists ρ1 ∈ (0, ρ] such that for any T > T∗ > 0 we have

sup
t∈[T∗,T ]

∫ ∣∣∣∣∣EW δ
ε

(
t

γ2
,
x

γ
,k

)
−W (t,x,k)

∣∣∣∣∣
2

dxdk → 0, as (ε, δ, γ) → 0

and (ε, δ, γ) ∈ Kµ,ρ1. Here

W (t,x,k) := w+(t,x;k)b+(k)⊗ b+(k) + w−(t,x;k)b−(k)⊗ b−(k).

with the functions w± that satisfy the spatial diffusion equation with the

initial data w±(0,x,k) = ū0
±(x,k).
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Step 3. From the Fokker-Planck to diffusion – very straightforward.

Start with the Fokker-Planck equation

∂φ̄

∂t
+ c0k̂ · ∇xφ̄ =

d∑
m,n=1

∂

∂km

(
Dmn(k̂, k)

∂φ̄

∂kn

)
.

Then as γ → 0, φ̄γ(t/γ2,x/γ, k) → w(t,x, k) that satisfies

∂w

∂t
=

d∑
m,n=1

amn(k)
∂2w

∂xn∂xm

with the diffusion matrix anm(k) =
1

Γd−1

∫
Sd−1

H ′
0(k)lnχm(kl)dΩ(l). The

functions χj are the mean-zero solutions of
d∑

m,n=1

∂

∂km

(
Dmn(k̂, k)

∂χj

∂kn

)
= c0k̂j.

with the error estimate

‖w(t)− φ̄γ(t)‖L∞(A(M)) ≤ C
(
γT + γ1/2

)
‖φ0‖2,0, 0 ≤ t ≤ T.
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Step 2. From the Liouville equation to the Fokker-Planck equation.

In a ”random geometric acoustics” medium c(x) = c0 +
√

δc1(x/δ) and
∂w

∂t
+ (c0 +

√
δc1(x/δ))k̂ · ∇xw −

|k|√
δ
∇c1

(
x

δ

)
· ∇kw = 0.

Trajectories:
dX

dt
= (c0 +

√
δc1(X/δ))K̂,

dK

dt
= −

|K|√
δ
∇c1

(
X

δ

)
– a weakly

perturbed random Hamiltonian flow with H(x,k) = [c0 +
√

δc1(x/δ)]|k|.
Diffusion in a random Hamiltonian flow

The Hamiltonian Hδ(x,k) = H0(|k|) +
√

δH1(x, |k|)
1. The background Hamiltonian H0(|k|) ∈ C3

loc(R
d) depends only on |k|,

and is uniform in space. Moreover, H0 : [0,+∞) → R is a strictly increas-

ing C3-function satisfying H0(0) ≥ 0 and H ′
0(k) > 0 for all k > 0,

Examples: the quantum Hamiltonian H0(k) = k2/2 (Kesten-Papanicolaou

without the error estimate), the acoustic wave Hamiltonian H0(k) = c0k.
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2. The random medium.

(a) The realizations of H1(x, k) are P–a.s. C2-smooth in and

Di,j(M) := max
|α|=i

ess-sup
(x,k,ω)∈Rd×[M−1,M ]×Ω

|∂α
x∂

j
kH1(x, k;ω)| < +∞, i, j = 0,1,2.

(b) Mixing. The random field is strongly mixing in the uniform sense: for

any R > 0 let Ci
R and Ce

R be the σ–algebras generated by random variables

H1(x, k) with k ∈ [0,+∞), x ∈ BR and x ∈ Bc
R respectively. The uniform

mixing coefficient between the σ–algebras is

φ(ρ) := sup[ |P(B)− P(B|A)| : R > 0, A ∈ Ci
R, B ∈ Ce

R+ρ ],

for all ρ > 0. We suppose that φ(ρ) decays faster than any power: for

each p > 0 hp := sup
ρ≥0

ρpφ(ρ) < +∞.

3. Two-point correlations: H1(x, |k|) is a mean-zero stationary (in x) ran-

dom field with the correlation function R(y, k) := E[H1(y, k)H1(z, k)] ∈
C∞. Example: H1(x, k) = c1(x)h(k), where c1(x) is a stationary uni-

formly mixing random field with a smooth correlation function, and h(k)

is a smooth deterministic function.
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The main theorem. Let φδ(t,x,k) satisfy the Liouville equation
∂φδ

∂t
+∇kHδ (x,k) · ∇xφδ −∇xHδ (x,k) · ∇kφδ = 0,

φδ(0,x,k) = φ0(δx,k) ∈ C4
c .

suppφ0 ⊆ A(M) = {(x,k) : M−1 < |k| < M} for some positive M > 0.

The diffusion matrix:

Dmn(k̂, l) = −
1

2

∫ ∞
−∞

∂2R(H ′
0(l)sk̂, l)

∂xn∂xm
ds = −

1

2H ′
0(l)

∫ ∞
−∞

∂2R(sk̂, l)

∂xn∂xm
ds

Theorem Let φ̄ satisfy

∂φ̄

∂t
+ H ′

0(k) k̂ · ∇xφ̄ =
d∑

m,n=1

∂

∂km

(
Dmn(k̂, k)

∂φ̄

∂kn

)
and φ̄(0,x,k) = φ0(x,k). Suppose that M ≥ M0 > 0 and T ≥ T0 > 0.

Then, there exist two constants C, α0 > 0 such that for all T ≥ T0

sup
(t,x,k)∈[0,T ]×K

∣∣∣∣Eφδ
(

t

δ
,
x

δ
,k
)
− φ̄(t,x,k)

∣∣∣∣ ≤ CT (1 + ‖φ0‖1,4)δ
α0

for all compact sets K ⊂ A(M).
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Outline of the proof. Characteristics:

dX

dt
= −(c0 +

√
δc1(X(t)/δ))K̂(t),

dK

dt
=
|K(t)|√

δ
∇c1(X(t)/δ), X(0) = x, K(0) = k.

Then solution of the Liouville equation is wδ(t,x,k) = W0(X(t), K(t)).

The strategy is a modification of the idea of Kesten and Papanicolaou.

1. The problem is self-intersections – create correlations with the past.

2. Define a stopping time τδ s.t. no self-intersections until t = τδ.

3. Introduce an augmented process that coincides with the true trajec-

tories until t = τδ but becomes the limit diffusion after the stopping time.

4. Show that the modified process converges to the right limit.

5. The stopping time for the diffusion tends to infinity as δ → 0.

6. Hence τδ →∞ for the modified process as δ → 0.

7. Hence the original process does not do self-intersections.

8. Hence the original process converges to the right limit.
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The stopping time:

returning back to a sausage around X(s), 0 ≤ s ≤ tk−1, tk = k/p - mesh

of times, 1/q – sausage width, q � p

Uδ(π) := inf

[
t ≥ 0 : ∃ k ≥ 1 and t ∈ [t(p)k , t

(p)
k+1) for which X(t) ∈ X

t
(p)
k−1

(q)

]
.

The “violent turn” stopping time (prevents turning around quickly)

Sδ(π) := inf

[
t ≥ 0 : for some k ≥ 0 we have t ∈

[
t
(p)
k , t

(p)
k+1

)
and

K̂(t(p)k−1) · K̂(t) ≤ 1−
1

N
, or K̂

(
t
(p)
k −

1

N1

)
· K̂(t) ≤ 1−

1

N

]
,

we set the stopping time

τδ(π) := Sδ(π) ∧ Uδ(π).

23



The modified dynamics

We set

Fδ(t, y, l;π, ω) = Θ(t, δy, l;π)∇yc1 (y, |l|;ω) |l|.

The modified process (y(δ)(t;x,k, ω), l(δ)(t;x,k, ω))t≥0 solves

dy(δ)(t;x,k)
dt =

[
c0 +

√
δ c1

(
y(δ)(t;x,k)

δ ,

)]
l̂
(δ)

(t;x,k, )

dl(δ)(t;x,k)
dt = − 1√

δ
Fδ

(
t,

y(δ)(t;x,k)
δ , l(δ)(t;x,k);y(δ)(·;x,k), l(δ)(·;x,k)

)
y(δ)(0;x,k) = x, l(δ)(0;x,k) = k.

The cut-off Θ does two things:

(i) You shall not turn back violently.

(ii) You shall go across the past sausage along a straight line. This

prevents correlation gain.
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The Kesten-Papanicolaou mixing lemma: the closure problem – how to

split 〈V V W 〉?
Suppose Z, g1, g2, are Ft-measurable, while X̃1, X̃2 are random fields of

the form X̃i(x, k) = Xi

((
c1(x),∇xc1(x),∇2

xc1(x)
))

.

We also let U(θ1, θ2) := E
[
X̃1(θ1)X̃2(θ2)

]
.

The mixing lemma. Assume that r, t ≥ 0 and inf
u≤t

∣∣∣∣∣∣gi −
y(δ)(u)

δ

∣∣∣∣∣∣ ≥ r

δ
,

P–a.s. on the set Z 6= 0 for i = 1,2. Then, we have∣∣∣E [X̃1(g1)X̃2(g2)Z
]
− E [U(g1, g2)Z]

∣∣∣ ≤ Cφ

(
r

2δ

)
‖X1‖L∞‖X2‖L∞‖Z‖L1(Ω).

This allows to avoid infinite Duhamel expansions in the weak coupling

regime – replaces the diagrams. You shall iterate only twice and then

use mixing to show ”〈V V W 〉 = 〈V V 〉〈W 〉+ small”.

The dream: mixing lemma without trajectories – but waves ain’t local

objects.
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The two-dimensional case

Can show convergence of characteristics to the Fokker-Planck momen-

tum diffusion – did not try to extend to the spatial diffusion but should

be possible.

The key point. The main difficulty in 2D – self-intersections – so al-

low them but prohibit non-transverse self-intersections. This produces a

controlled small correlation gain that vanishes in the limit.
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A beautiful picture
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Some open questions.

1. The radiative transport regime – the mixing lemma?

2. Convergence in probability and self-averaging – doable but tedious.

3. Low-dimensional noise in a higher dimensional Hamiltonian system.

4. Bounded domains – uniformization of eigenfunctions.

5. Application of the kinetic equations to the inverse problems.
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