On the shrinking obstacle limit in a viscous incompressible flow

D. Iftimie*, M. Lopes, H. Nussenzveig-Lopes

Setting:

Exterior domain $\Omega_{\varepsilon}=\varepsilon\Omega$, simply-connected obstacle.

Incompressible Navier-Stokes equations:

 $\partial_t u - \nu \triangle u + u \cdot \nabla u = -\nabla p, \quad \text{div } u = 0$ with Dirichlet boundary conditions.

Limit flow as $\varepsilon \to 0$?

Initial data (motivated by inviscid study):

$$u_0 = K_{\varepsilon}[\omega_0] + \alpha H_{\varepsilon}$$

where

- initial vorticity ω_0 is fixed (independent of ε), smooth and compactly supported outside 0;
- initial circulation γ of u_0 along $\partial \Omega$ is independent of ε .

 K_{ε} is the ∇_x^{\perp} of the Green function and H_{ε} is a canonical harmonic vector field.

Inviscid case

Circulation
$$\gamma = lpha - m$$
, $m = \int \omega_0$.

The limit vorticity is

$$\operatorname{curl} u = \omega + \gamma \delta_0$$

with limit equation in vorticity formulation

$$\partial_t \omega + \operatorname{div} \left[\left(v + \gamma H \right) \omega \right] = 0$$

 $v = K[\omega], \qquad H = \frac{x^{\perp}}{2\pi |x|^2}.$

Here, K is the usual kernel of the Biot-Savart law in \mathbb{R}^2 .

The equation of the limit velocity is roughly the Euler equation with an additional term which takes into account the circulation and a (fixed) Dirac mass in 0.

Viscous case

Convergence to the Navier-Stokes equations in the case of small circulation:

<u>**Theorem.</u>** There exists $\gamma_0 > 0$ independent of ε such that if $|\gamma| \leq \gamma_0$ then u_{ε} converges to the solution of the incompressible Navier-Stokes equations in \mathbb{R}^2 with initial vorticity $\omega_0 + \gamma \delta_0$.</u>

The initial data makes sense. The circulation vanishes instantly.

The limit vorticity at time t = 0 has a Dirac mass in 0.

In \mathbb{R}^2 the global existence holds (Kato, Cottet, Giga-Miyakawa-Osada) but uniqueness was proved only very recently (Gallagher-Gallay).

The existence in the full plane case uses L^1 estimates on the vorticity; these are unavailable for domains with boundaries.

L^2 a priori estimates?

From the inviscid work we know that the behavior of the initial velocity can be described as follows :

- for |x| < 1: γH
- for |x| > M: αH
- plus a remainder bounded in all L^p , 1 .

Two problems occur:

- initial velocity not square-integrable at ∞ ;
- initial velocity not square-integrable in 0.

The problem at infinity subsists for t > 0 but can be solved because it is independent of ε .

The problem in 0 disappears for t > 0, but local estimates are required. These are done with a fixed point argument and demand smallness of circulation.

Once the local estimates done, global L^2 estimates are not difficult.

Local estimates

Weighted in time norms:

$$\|f\|_{p,T} = \sup_{t \in [0,T]} t^{\frac{1}{2} - \frac{1}{p}} \|f(t)\|_{L^{p}}.$$
$$\widetilde{u} = S(t)(u_{0})$$
$$w = u - \widetilde{u}$$

verifies

$$w(t) = \int_0^t S(t-\tau) \mathbb{P} \operatorname{div} (w \otimes w + w \otimes \widetilde{u} + \widetilde{u} \otimes w + \widetilde{u} \otimes \widetilde{u})(\tau) d\tau.$$

so (via Maremonti-Solonnikov, Dan-Shibata and the change of functions $f_{\varepsilon}(t,x) \leftrightarrow f(\varepsilon^2 t, \varepsilon x)$) $\|w\|_{p,t} \leq C(\|w\|_{q_1,t}\|w\|_{q_2,t} + \|w\|_{q_1,t}\|\widetilde{u}\|_{q_2,t} + \|\widetilde{u}\|_{q_1,t}\|\widetilde{u}\|_{q_1,t})$

where

$$\frac{1}{q_1} + \frac{1}{q_2} < \frac{1}{2} + \frac{1}{p}.$$

We need to have that $\|\widetilde{u}\|_{p,t}$ is small. This requires the smallness of the circulation and demands to show that $S(t)H_{\varepsilon}$ belongs to the weighted in time spaces. We assume that $\varepsilon = 1$, set $T : \Omega \to B(0,1)^c$ a biholomorphism, $S = T^{-1}$ and prove that $\widetilde{u} = Stokes[h(|T|)H_{\Omega}]$ belongs to the weighted in time space on \mathbb{R}_+ .

Obvious in the circular-symmetric case by the maximum principle. In the general case we reduce the problem to that case by a change of variables:

$$\widetilde{u} = (\nabla T)^{t} v \circ T$$
$$\partial_{t} v + \nu \nabla^{\perp} \left(\frac{1}{|S'|^{2}} \operatorname{curl} v \right) = -\nabla q$$
$$\operatorname{div} v = 0, \quad v(0, y) = \frac{y^{\perp}}{2\pi |y|^{2}} h(|y|).$$
Next, $\overline{w} = v - \overline{v}$ (\overline{v} = leading term) verifies
$$\partial_{t} \overline{w} + \nu \nabla^{\perp} \left(\frac{1}{|S'|^{2}} \operatorname{curl} \overline{w} \right) = -\nabla q_{2}$$
$$-\nu \nabla^{\perp} \left[\operatorname{curl} \overline{v} \left(\alpha - \frac{1}{|S'|^{2}} \right) \right]$$

By duality

$$\int \overline{w}(t,x) \cdot \varphi_0(x) \, dx$$

$$\leq C \int_0^t \|\operatorname{curl} \overline{v}(\tau)\|_{L^q} \|\operatorname{curl} \varphi(t-\tau)\|_{L^r} \, d\tau$$

$$\leq C \|\varphi_0\|_{T^{p'}} t^{\frac{1}{p}-\frac{1}{2}}.$$

Global estimates

Energy estimates on w: $\partial_t \|w\|_{L^2}^2 + \|\nabla w\|_{L^2}^2 \le \frac{C}{4} \|w\|_{L^2}^2 + \frac{C}{4}.$ $\frac{\|w(t_2)\|_{L^2}^2}{t_2^C} + \int_{t_1}^{t_2} \frac{\|\nabla w(s)\|_{L^2}^2}{s^C} ds$ $\leq \frac{1}{t_1^C} - \frac{1}{t_2^C} + \frac{\|w(t_1)\|_{L^2}^2}{t_2^C}.$ We multiply by t_1^{a+C-1} (a > 0) and integrate w.r.t. t_1 : $\int_{0}^{t_2} s^a \|\nabla w(s)\|_{L^2}^2 \leq \frac{C}{a} t_2^a - \|w(t_2)\|_{L^2}^2 t_2^{a+C}$ $+(a+C)\int_{0}^{t_{2}}\|w(s)\|_{L^{2}}^{2}s^{a-1}ds.$

Therefore, w is bounded in $L^{\infty}_{loc}(\mathbb{R}_+; L^2) \cap L^p_{loc}(\mathbb{R}_+; H^1)$ for all $p \in [1, 2)$.

Similar estimates easily hold for $S(t)u_0 = u - w$.

Strong convergence

We need some equicontinuity in time. We extend everything with 0 inside the obstacle. To avoid estimating the pressure, we use the vorticity equation.

 $\varphi \in C_0^\infty(\mathbb{R}^2)$ div free test vector field

 ψ such that $\nabla^{\perp}\psi = \varphi$ and $\psi(0) = 0$. Smooth cut-off functions:

 $g_{\lambda} = g(\cdot/\lambda)$ localizes in $|x| > \lambda$ $h_{\lambda} = h(\cdot/\lambda)$ localizes in $|x| < \lambda$. Multiply the vorticity equation by $g_{\varepsilon}\psi h_{R}$:

$$\int \left[u(t_2) - u(t_1) \right] \nabla^{\perp} (g_{\varepsilon} \psi h_R) = \underbrace{\int_{t_1}^{t_2} \int \Delta \omega \, g_{\varepsilon} \psi h_R}_{I_1} - \underbrace{\int_{t_1}^{t_2} \int u \cdot \nabla \omega \, g_{\varepsilon} \psi h_R}_{I_2}$$

and send $R \to \infty$. Then

$$\limsup_{R \to \infty} |I_1| \le C \|\varphi\|_{H^2} \|\omega\|_{L^{\frac{9}{5}}(t_1, t_2; L^2)} |t_1 - t_2|^{\frac{4}{9}}.$$

and

$$\begin{split} \limsup_{R \to \infty} |I_2| &\leq C \|\varphi\|_{H^2} \|\omega\|_{L^{\frac{9}{5}}(t_1, t_2; L^2)} \\ & \|u\|_{L^3(t_1, t_2; L^4)} |t_1 - t_2|^{\frac{1}{9}}. \end{split}$$

and finally, since
$$u(t_2) - u(t_1) \in L^2$$
,

$$\lim_{R \to \infty} \int \left[u(t_2) - u(t_1) \right] \nabla^{\perp} (g_{\varepsilon} \psi h_R)$$

$$= \langle g_{\varepsilon} u(t_2) - g_{\varepsilon} u(t_1), \varphi \rangle + o(\varepsilon).$$

By the Ascoli theorem, the strong convergence of u in $L^2_{loc}(\mathbb{R}^*_+\times\mathbb{R}^2)$ follows.

Passing to the limit

We denote by \overline{u} the limit velocity.

 $\varphi \in C_0^{\infty}(\mathbb{R}^*_+ \times \mathbb{R}^2)$ div free test vector field ψ such that $\nabla^{\perp} \psi = \varphi$ and $\psi(t, 0) = 0$.

Multiply the vorticity equation by $g_\eta \psi h_R$, integrate in time and space and pass to the limit $\varepsilon \to 0$ to obtain

$$\underbrace{\left\langle \overline{\partial_t \overline{\omega}, g_\eta \psi h_R} \right\rangle}_{J_1} - \underbrace{\left\langle \overline{\omega}, \Delta(g_\eta \psi h_R) \right\rangle}_{J_2}}_{J_2} - \underbrace{\left\langle \overline{u} \,\overline{\omega}, \nabla(g_\eta \psi h_R) \right\rangle}_{J_3} = 0.$$
We finally take the limits $\eta \to 0$ and $R \to \infty$:

$$\lim_{R \to \infty} \lim_{\eta \to 0} J_3 = -\iint \overline{u} \,\overline{\omega} \,\varphi^{\perp} = -\iint \overline{u} \cdot \nabla \overline{u} \cdot \varphi$$

$$\lim_{R \to \infty} \lim_{\eta \to 0} J_2 = \iint \overline{\omega} \,\Delta \psi = \left\langle \Delta \overline{u}, \varphi \right\rangle.$$

$$\lim_{R \to \infty} \lim_{\eta \to 0} J_1 = \left\langle \partial_t \overline{u}, \varphi \right\rangle.$$

 \overline{u} verifies the Navier-Stokes equations in the distributional sense.

The initial data follows from the equicontinuity in time and the inviscid result.