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Setting:

Exterior domain Ωε = εΩ, simply-connected ob-
stacle.

Incompressible Navier-Stokes equations:

∂tu− ν4u + u · ∇u = −∇p, div u = 0

with Dirichlet boundary conditions.

Limit flow as ε→ 0?

Initial data (motivated by inviscid study):

u0 = Kε[ω0] + αHε

where

• initial vorticity ω0 is fixed (independent of ε),
smooth and compactly supported outside 0;

• initial circulation γ of u0 along ∂Ω is indepen-
dent of ε.

Kε is the ∇⊥x of the Green function and Hε is a
canonical harmonic vector field.
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Inviscid case

Circulation γ = α−m, m =
∫
ω0.

The limit vorticity is

curlu = ω + γδ0
with limit equation in vorticity formulation

∂tω + div
[(
v + γH

)
ω
]

= 0

v = K[ω], H =
x⊥

2π|x|2
.

Here, K is the usual kernel of the Biot-Savart law
in R2.

The equation of the limit velocity is roughly the
Euler equation with an additional term which takes
into account the circulation and a (fixed) Dirac mass
in 0.
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Viscous case

Convergence to the Navier-Stokes equations in the
case of small circulation:

Theorem. There exists γ0 > 0 independent of ε
such that if |γ| ≤ γ0 then uε converges to the solu-
tion of the incompressible Navier-Stokes equations
in R2 with initial vorticity ω0 + γδ0.

The initial data makes sense. The circulation van-
ishes instantly.

The limit vorticity at time t = 0 has a Dirac mass
in 0.

In R2 the global existence holds (Kato, Cottet,
Giga-Miyakawa-Osada) but uniqueness was proved
only very recently (Gallagher-Gallay).

The existence in the full plane case uses L1 es-
timates on the vorticity; these are unavailable for
domains with boundaries.
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L2 a priori estimates?

From the inviscid work we know that the behavior
of the initial velocity can be described as follows :

• for |x| < 1: γH
• for |x| > M : αH
• plus a remainder bounded in all Lp, 1 < p <
∞.

Two problems occur:

• initial velocity not square-integrable at ∞;
• initial velocity not square-integrable in 0.

The problem at infinity subsists for t > 0 but can
be solved because it is independent of ε.

The problem in 0 disappears for t > 0, but local
estimates are required. These are done with a fixed
point argument and demand smallness of circula-
tion.

Once the local estimates done, global L2 estimates
are not difficult.
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Local estimates

Weighted in time norms:

‖f‖p,T = sup
t∈[0,T ]

t
1
2−

1
p‖f (t)‖Lp.

ũ = S(t)(u0)

w = u− ũ

verifies

w(t) =

∫ t

0
S(t− τ )P div

(
w ⊗ w + w ⊗ ũ

+ ũ⊗ w + ũ⊗ ũ
)
(τ )dτ.

so (via Maremonti-Solonnikov, Dan-Shibata and
the change of functions fε(t, x) ↔ f (ε2t, εx))

‖w‖p,t ≤ C
(
‖w‖q1,t‖w‖q2,t + ‖w‖q1,t‖ũ‖q2,t

+ ‖ũ‖q1,t‖ũ‖q1,t
)

where
1

q1
+

1

q2
<

1

2
+

1

p
.

We need to have that ‖ũ‖p,t is small. This re-
quires the smallness of the circulation and demands
to show that S(t)Hε belongs to the weighted in
time spaces.

5



We assume that ε = 1, set T : Ω → B(0, 1)c

a biholomorphism, S = T−1 and prove that ũ =
Stokes

[
h(|T |)HΩ

]
belongs to the weighted in time

space on R+.

Obvious in the circular-symmetric case by the max-
imum principle. In the general case we reduce the
problem to that case by a change of variables:

ũ = (∇T )tv ◦ T

∂tv + ν∇⊥
( 1

|S′|2
curl v

)
= −∇q

div v = 0, v(0, y) =
y⊥

2π|y|2
h(|y|).

Next, w = v − v (v = leading term) verifies

∂tw + ν∇⊥
( 1

|S′|2
curlw

)
= −∇q2

− ν∇⊥
[
curl v

(
α− 1

|S′|2
)]

By duality∫
w(t, x) · ϕ0(x) dx

≤ C

∫ t

0
‖curl v(τ )‖Lq‖curlϕ(t− τ )‖Lr dτ

≤ C‖ϕ0‖Lp′t
1
p−

1
2.
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Global estimates

Energy estimates on w:

∂t‖w‖2
L2 + ‖∇w‖2

L2 ≤
C

t
‖w‖2

L2 +
C

t
.

‖w(t2)‖2
L2

tC2
+

∫ t2

t1

‖∇w(s)‖2
L2

sC
ds

≤ 1

tC1
− 1

tC2
+
‖w(t1)‖2

L2

tC1
.

We multiply by ta+C−1
1 (a > 0) and integrate

w.r.t. t1:∫ t2

0
sa‖∇w(s)‖2

L2 ≤
C

a
ta2 − ‖w(t2)‖2

L2t
a+C
2

+ (a + C)

∫ t2

0
‖w(s)‖2

L2s
a−1 ds.

Therefore, w is bounded in

L∞loc(R+;L2) ∩ Lploc(R+;H1)

for all p ∈ [1, 2).

Similar estimates easily hold for S(t)u0 = u− w.
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Strong convergence

We need some equicontinuity in time. We extend
everything with 0 inside the obstacle. To avoid esti-
mating the pressure, we use the vorticity equation.
ϕ ∈ C∞0 (R2) div free test vector field

ψ such that ∇⊥ψ = ϕ and ψ(0) = 0.
Smooth cut-off functions:
gλ = g(·/λ) localizes in |x| > λ
hλ = h(·/λ) localizes in |x| < λ.

Multiply the vorticity equation by gεψhR:∫ [
u(t2)− u(t1)

]
∇⊥(gεψhR) =∫ t2

t1

∫
4ω gεψhR︸ ︷︷ ︸
I1

−
∫ t2

t1

∫
u · ∇ω gεψhR︸ ︷︷ ︸
I2

and send R→∞. Then

lim sup
R→∞

|I1| ≤ C‖ϕ‖H2‖ω‖
L

9
5(t1,t2;L2)

|t1 − t2|
4
9.

and

lim sup
R→∞

|I2| ≤ C‖ϕ‖H2‖ω‖
L

9
5(t1,t2;L2)

‖u‖L3(t1,t2;L4)|t1 − t2|
1
9.
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and finally, since u(t2)− u(t1) ∈ L2,

lim
R→∞

∫ [
u(t2)− u(t1)

]
∇⊥(gεψhR)

= 〈gεu(t2)− gεu(t1), ϕ〉 + o(ε).

By the Ascoli theorem, the strong convergence of
u in L2

loc(R
∗
+ × R2) follows.
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Passing to the limit

We denote by u the limit velocity.
ϕ ∈ C∞0 (R∗+ × R2) div free test vector field

ψ such that ∇⊥ψ = ϕ and ψ(t, 0) = 0.
Multiply the vorticity equation by gηψhR, inte-

grate in time and space and pass to the limit ε→ 0
to obtain〈
∂tω, gηψhR

〉︸ ︷︷ ︸
J1

−
〈
ω,4(gηψhR)

〉︸ ︷︷ ︸
J2

−
〈
uω,∇(gηψhR)

〉︸ ︷︷ ︸
J3

= 0.

We finally take the limits η → 0 and R→∞:

lim
R→∞

lim
η→0

J3 = −
∫∫

uω ϕ⊥ = −
∫∫

u · ∇u · ϕ

lim
R→∞

lim
η→0

J2 =

∫∫
ω4ψ = 〈4u, ϕ〉.

lim
R→∞

lim
η→0

J1 = 〈∂tu, ϕ〉.

u verifies the Navier-Stokes equations in the distri-
butional sense.

The initial data follows from the equicontinuity in
time and the inviscid result.
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