Enstrophy dissipation for 2D incompressible flows

Anna L. Mazzucato - Penn State

Joint with Helena and Milton Lopes UNICAMP & Penn State

CSCAMM Workshop, May 17 2004

Outline of the talk

- Motivation (Kraichnan-Batchelor theory).
- Weak solutions to Euler equations: vanishing viscosity limit, regularization by mollification.
- Enstrophy defects and balance equations. Eyink's conjecture.
- Finite enstrophy data, $\omega_0 \in L^2$: existence of positive defect, transport of enstrophy density (velocity unbounded).
- Infinite enstrophy data, $\omega_0 \in L^{2,\infty} \cap B^0_{2,\infty}$: existence of a well-defined defect, counterexample to Eyink's conjecture.
- Conclusions.

Motivation

- 2D Turbulence: direct Enstrophy cascade with energy spectrum $E(k) \sim k^{-3} + \log$ (Kraichnan-Batchelor, $\sim 1967-69$).
- Energy dissipation $\sim 2\nu\Omega \Rightarrow$ negligible for small viscosity. Enstrophy dissipation cannot be neglected as $\nu \rightarrow 0$.
- As viscosity \rightarrow 0, turbulent solutions to Navier-Stokes give rise to weak solutions to 2D Euler (Onsager 1949).
- Enstrophy $\Omega(t) = 1/2 \|\omega(t)\|_{L^2}^2$ is conserved for regular Euler flows. A paradox.
- At small scales and high Re, coherent vortices appear ⇒ exact steady-state solutions to 2D Euler (McWilliams 1984).

Vorticity formulation for 2D Flows

Vorticity ω -velocity u formulation to 2D Euler:

$$\partial_t \omega + u \cdot \nabla \omega = 0, \tag{1a}$$

$$u = K * \omega, \tag{1b}$$

where $K(x) \equiv \frac{x^{\perp}}{2\pi |x|^2}$ is the Biot-Savart kernel. (1a) is a transport equation for ω .

Vorticity -velocity formulation to 2D Navier-Stokes:

$$\partial_t \omega + u \cdot \nabla \omega = \nu \Delta \omega, \tag{2a}$$

$$u = K * \omega, \tag{2b}$$

where ν is the viscosity coefficient. (2a) is a transport-diffusion equation for ω .

Weak solutions to 2D Euler

Definition. $\omega \in L^{\infty}([0,T); L^{p}(\mathbb{R}^{2})), p \geq 4/3$, is a weak solution to 2D Euler with initial data $\omega_{0} \in L^{p}_{c}(\mathbb{R}^{2})$, if $\forall \varphi \in C^{\infty}_{c}([0,T) \times \mathbb{R}^{2})$,

$$\int_0^T \int_{\mathbb{R}^2} \varphi_t \omega + \nabla \varphi \cdot u \, \omega \, dx dt + \int_{\mathbb{R}^2} \varphi(x, 0) \omega_0(x) \, dx = 0,$$

and $u \in L^{\infty}([0, T); L^2(\mathbb{R}^2) + L^{\infty}(\mathbb{R}^2)).$

$$\omega \in L^p(\mathbb{R}^2)$$
, $p \geq 4/3 \Rightarrow u \, \omega \in L^1(\mathbb{R}^2)$.

Uniqueness is proved for nearly bounded vorticity (Yudovich, Vishik).

Existence holds for measures $\omega_0 \in (\mathcal{B}M_{c,+} + L_c^1) \cap H_{\text{loc}}^{-1}$, e.g. vortex sheets (Delort, Majda, Schochet, Vecchi-Wu), using a *different* weak formulation.

Enstrophy

Define enstrophy $\Omega(t) = \frac{1}{2} ||\omega(t)||_{L^2}^2$ with enstrophy density $\vartheta(x,t) = \frac{1}{2} |\omega|^2(x,t)$. ϑ describes the space-time distribution of enstrophy.

Study transport of ϑ by *irregular* velocity field $u \Rightarrow$ renormalized solutions to *linear* transport equations (DiPerna-Lions):

Definition. $u \in L^1([0,T], W^{1,1}_{\text{loc}}), \ \omega \in L^\infty([0,T], L^0).$ ω is a renormalized solution to $\partial_t \omega + u \cdot \nabla \omega = 0$ if

 $\partial_t \beta(\omega) + u \cdot \nabla \beta(\omega) = 0,$

for all β admissible $\in \mathcal{A} = \{\beta \in C^1 \cap L^\infty, \beta \equiv 0 \text{ near } 0\}.$

- Renormalized solutions are unique given u. The distribution function and any rearrangement-invariant norm is preserved if div u = 0.
- 2D Euler solution $\omega \in L^{\infty}([0,T], L^p)$, $p \geq 2$, is the unique weak and renormalized solution to the linear transport equation $\Rightarrow \Omega$ exactly conserved.
- If p > 2, then $\beta(s) = s^2$ can be taken as an admissible function $\Rightarrow \vartheta$ is also transported by u (Eyink).
- 2D Euler solution $\omega \in L^{\infty}([0,T], L^p)$, 1 , is the unique renormalized solution if limit of exact smooth solutions.

Formulation of the problem

Reconcile KB theory with solutions to 2D Euler:

May be possible to define non-trivial enstrophy flux as limit of source terms in local balance equation after regularization (Eyink).

- Finite-enstrophy case: $\omega^0 \in L^2_c \Rightarrow u \in BMO$, $\theta \in L^1$. Need to define non-linear term $u \theta$ in transport equation.
- Infinite-enstrophy case: $\omega^0 \in L_c^{2,\infty} \cap B_{2,\infty}^0$. Meaningful enstrophy defect from *renormalized* enstrophy.

Regularization by vanishing viscosity and mollifying equation.

Balance equations

Define
$$\Omega_{\epsilon}(t) = \frac{1}{2} \|\omega_{\epsilon}(t)\|_{L^{2}}^{2}$$
. The density $\vartheta_{\epsilon}(x,t)$ satisfies:
 $\partial_{t}\vartheta_{\epsilon} + \operatorname{div}\left[u_{\epsilon}\vartheta_{\epsilon} + \omega_{\epsilon}\left((u\omega)_{\epsilon} - u_{\epsilon}\omega_{\epsilon}\right)\right] = -Z_{\epsilon}(\omega),$ (3)
where

$$Z_{\epsilon}(\omega) = -\nabla \omega_{\epsilon} \cdot ((u\omega)_{\epsilon} - u_{\epsilon}\omega_{\epsilon}).$$

with $(u \omega)_{\epsilon} = j_{\epsilon} * (u \omega)$.

Similarly, $\Omega_{\nu}(t) = \frac{1}{2} \|\omega_{\nu}(t)\|_{L^2}^2$. The density $\vartheta_{\nu}(x,t)$ satisfies: $\partial_t \vartheta_{\nu} + u_{\nu} \cdot \nabla \vartheta_{\nu} - \nu \Delta \vartheta_{\nu} = -Z^{\nu}(\omega_{\nu}),$ (4)

where

$$Z^{
u}(\omega_{
u})=
u|
abla\omega_{
u}|^{2}\geq0.$$

8

Enstrophy defects

Transport enstrophy defect: ω any weak solution to Euler

$$Z^{T}(\omega) \equiv \lim_{\epsilon \to 0} Z_{\epsilon}(\omega) = \lim_{\epsilon \to 0} [-\nabla \omega_{\epsilon} \cdot ((u\omega)_{\epsilon} - u_{\epsilon}\omega_{\epsilon})],$$

enstrophy disspation due to irregular transport.

Viscous enstrophy defect: ω viscosity solution

$$Z^{V}(\omega) \equiv \lim_{\nu \to 0} Z^{\nu}(\omega) = \lim_{\nu \to 0} \nu |\nabla \omega_{\nu}|^{2},$$

enstrophy dissipation due to viscosity.

 $Z^{V}(\omega) \geq 0$ if it exists as a distribution.

 ω will be called dissipative if Z^T exists and $Z^T(\nu) \geq 0$.

Eyink's conjecture (full plane)

Consider initial data with locally infinite enstrophy:

 ω_0 is in the Besov space $B^0_{2,\infty} \supset L^p$, $p \ge 2 \Rightarrow$ velocity $u_0 = K * \omega_0$ has Kraichnan-Batchelor energy spectrum:

 $E(k) \sim k^{-3}$.

Viscosity solutions $\omega = \lim_{\nu \to 0} \omega^{\nu}$ exist such that

$$\sup_{\nu>0} \|\omega^{\nu}\|_{L^{2}([0,T],B^{0}_{2,\infty})} < C.$$

Conjecture : Let ω be a viscosity solution with data ω_0 . Then:

$$Z(\omega) = Z^T(\omega) = Z^V(\omega) \ge 0,$$
 in \mathcal{D}' .

Moreover there exist initial data for which $Z(\omega) > 0$.

The L^2 case

Enstrophy density ϑ is renormalized solution to $\vartheta_t + \operatorname{div}(u \vartheta) = 0$, but not necessarily a weak solution \Rightarrow non-zero enstrophy defect may exist even if Ω conserved.

 $Z^{V}(\omega) \equiv 0$: by positivity enough to prove

$$\lim_{\nu \to 0} \int_0^T \int_{\mathbb{R}^2} Z_{\nu}(\omega) \, dx \, dt = \lim_{\nu \to 0} \nu \int_0^T \|\nabla \omega_{\nu}\|_{L^2}^2 \, dt = 0,$$

Direct consequence of energy conservation plus strong convergence $\omega_{\nu} \rightarrow \omega$ in L^2 .

But $Z^T(\omega) = \lim_{\epsilon} Z_{\epsilon}$ and $Z_{\epsilon} = [-\nabla \omega_{\epsilon} \cdot ((u\omega)_{\epsilon} - u_{\epsilon}\omega_{\epsilon})]$ does not have distinguish sign.

$$\exists \ \omega \in L^2(\mathbb{R}^2)$$
 such that $u \theta = (K * \omega) \omega^2 \notin \mathcal{D}'(\mathbb{R}^2)$.

Look at logarithmic refinement of L^2 , rearrangement-invariant space where $u \vartheta$ can be defined.

Choose $\omega \in L^2 \log L^{1/4}$ so that $\vartheta \in L^1 \log L^{1/2} \hookrightarrow H^{-1}_{\text{loc}}$ continuously.

Definition. $\omega \in L^2 \log L^{1/4} \cap L^1$, $u = K * \omega$, $\Phi \in C_0^\infty$, $\langle u\vartheta, \Phi \rangle = -\int_{\mathbb{R}^2} \omega(y) \int_{\mathbb{R}^2} K(y-x) \cdot \Phi(x)\vartheta(x) \, dx \, dy.$

Use antisymmetry of Biot-Savart kernel (cf. Schochet's proof of Delort theorem).

Theorem 1 (H. Lopes, M. Lopes, A. M.). Consider a viscosity solution $\omega \in L^{\infty}([0,T); L^2(\log L)^{1/4}(\mathbb{R}^2))$ to

2D Euler. Then the following equation holds in the sense of distributions:

$$\partial_t(|\omega|^2) + \operatorname{div}(u|\omega|^2) = 0, \qquad u = K * \omega.$$

Theorem 2 (H. Lopes, M. Lopes, A. M.).

Let $\omega \in L^{\infty}([0,T); L^2(\log L)^{1/4}(\mathbb{R}^2) \cap L^1(\mathbb{R}^2))$ be a weak solution of 2D Euler. Then $Z^T(\omega)$ exists (as a distribution). If ω is a viscosity solution, then $Z^T(\omega) \equiv 0$.

If $\exists \omega \in L^{\infty}([0,T], L^2 \log L^{1/4})$ with $Z^T(\omega) \neq 0$, nonuniqueness of solutions to 2D Euler follows.

Proof of Theorem 1:

• ω viscosity solution. Pass to the limit $\nu \to 0$ in

$$\int_0^T \int_{\mathbb{R}^2} \varphi_t \vartheta_\nu \, dx dt + \int_0^T \int_{\mathbb{R}^2} \nabla \varphi \cdot u_\nu \vartheta_\nu \, dx dt = \int_0^T \int_{\mathbb{R}^2} \nu \Delta \varphi \, \vartheta_\nu \, dx dt - \int_0^T \int_{\mathbb{R}^2} \varphi Z^\nu(\omega_\nu) \, dx dt.$$

• $\omega_{\nu}(t) \rightarrow \omega(t)$ strongly in $L^2(\mathbb{R}^2)$ from energy estimate:

$$\|\omega(t)\|_{L^2} - \|\omega_{\nu}(t)\|_{L^2} = \nu \int_0^t \int_{\mathbb{R}^2} |\nabla \omega_{\nu}|^2 \, dx \, dt.$$

• $\vartheta_{\nu} \to \vartheta$ in $L^{1}([0,T) \times \mathbb{R}^{2})$, $Z^{\nu}(\omega_{\nu}) \to 0$ in $L^{1}([0,T) \times \mathbb{R}^{2})$ \Rightarrow in the limit:

$$\int_0^T \int_{\mathbb{R}^2} \varphi_t \vartheta \, dx dt + \lim_{\nu \to 0} \int_0^T \int_{\mathbb{R}^2} \nabla \varphi \cdot u_\nu \, \vartheta_\nu \, dx dt = 0$$

14

• Analyze behavior of non-linear term as $\nu \rightarrow 0$:

$$-\int_0^T\int_{\mathbb{R}^2}\omega_\nu(y,t)\int_{\mathbb{R}^2}K(y-x)\cdot\nabla\varphi(x,t)\vartheta_\nu(x,t)\,dx\,dydt.$$

• Product estimate:

 $\|fg\|_{L\log L^{1/2}} \le 4(\max\{\|f\|_{L^2\log L^{1/4}}; \|g\|_{L^2\log L^{1/4}}\})^2.$

Use Luxemburg norm:

$$\|f\|_{L^p\log L^{\alpha}} = \inf\left\{k > 0 \mid \int A_{p,\alpha}(|f(x)|) \, dx \le 1\right\}.$$

Exploit that $A_{p,\alpha}(s) = [s \log^{\alpha}(2+s)]^p$ is non-decreasing and convex.

- $\vartheta_{\nu} \to \vartheta$ strongly in $L^{1}([0,T) \times \mathbb{R}^{2}) \Rightarrow K * (\nabla \phi \vartheta_{\nu}) \to K * (\nabla \phi \vartheta)$ weakly.
- Uniform bound for $\omega_{\nu}(t)$ in $L^2 \log L^{1/4}$ from divergence-free condition on u and convexity of $A_{2,1/4}$:

$$\|\omega_{\nu}(t)\|_{L^{2}\log L^{1/4}} \le \|\omega_{0}\|_{L^{2}\log L^{1/4}}.$$

Product estimate + uniform bound $\Rightarrow \{\nabla \phi \vartheta_{\nu}\}$ bounded in $L^{\infty}((0,T); L(\log L)^{1/2}).$

• Biot-Savart operator K smoothing of order 1 and $L^{\infty}((0,T), L(\log L)^{1/2}) \hookrightarrow L^{\infty}((0,T), H^{-1})_{\text{loc}} \Rightarrow$

 $\{K * \nabla \phi \vartheta_{\nu}\}$ is bounded in $L^{\infty}((0,T); L^2_{loc})$.

- If Supp $\phi \subset B_R$, show $|K * (\nabla \phi \vartheta_{\nu})(y,t)| \lesssim \Omega/|y|$, $|y| > 2R \Rightarrow$ $K * \nabla \phi \vartheta_{\nu} \to K * (\nabla \phi \vartheta)$ weakly in $L^{\infty}((0,T) \times B(0,2R))$.
- $\omega_{\nu} \to \omega$ strongly in $L^1([0,T] \times \mathbb{R}^2)$ from uniform bound on L^1 norm (maximum principle) and strong convergence in L^2 .
- Non-linear term:

$$\int_{0}^{T} \int_{B_{2R}} \omega_{\nu} K * (\nabla \phi \vartheta_{\nu}) dx dt + \int_{0}^{T} \int_{B_{2R}^{c}} \omega_{\nu} K * (\nabla \phi \vartheta_{\nu}) dx dt$$
$$\rightarrow \langle \omega, K * (\nabla \phi \vartheta) \rangle = \langle u \omega, \nabla \phi \rangle,$$

since each integral forms a "weak-strong" pair.

Theorem 1 is nearly optimal \Rightarrow there exist $\omega \in L^2 \log L^{1/6}$ such that $(K * \omega) \omega^2 = u \vartheta \notin \mathcal{D}'$.

Define
$$\omega^{\pm}(x) = \frac{1}{|x|| \log |x||^{\alpha}} \chi_{D^{\pm}(0;1/3)}(x), \ u^{\pm} = K * \omega^{\pm}, \text{ where}$$

 $1/2 < \alpha < 1, \qquad \begin{cases} D^{+}(0;1/3) = D(0,1/3) \cap \{x_{2} > 0\}, \\ D^{-}(0;1/3) = D(0,1/3) \cap \{x_{2} < 0\}. \end{cases}$

Show $|u^+(x)| \ge C |\log |x||^{1-\alpha}$ near origin. Note: $u^+ = u - u^-$, where u radial and u^- harmonic in \mathbb{H}^+ .

 $u = K * \omega$ bounded, because $\omega \in L^2$ radial.

Obtain growth of u^- by evaluating $K * \omega^-$ on real axis and using potential estimates on harmonic extension.

Initial data with infinite enstrophy

Look at data in $L^{2,\infty} \cap B^0_{2,\infty}$, rearrangement-invariant space of functions with KB spectrum.

Mildest behavior of u is for *radial* vorticity (K is odd \Rightarrow cancellations in $K * \omega$): $\omega = \phi(x) \frac{1}{|x|}$, ϕ cut-off near the origin.

Construct exact steady viscosity solution ω to 2D Euler such that

$$Z^T(\omega) = 0, \qquad Z^V(\omega) = rac{4\pi^3}{t}\delta_o, \qquad t > 0.$$

Strictly dissipative solutions exist.

Counterexample to Conjecture: notion of enstrophy defect *depends* on the approx sequence.

 ω radial $\Rightarrow u = K * \omega$ exact steady solution to 2D Euler, since $u \perp \nabla \omega$. Example of coherent vortex (DiPerna-Majda).

$$u_{\epsilon} \perp \omega_{\epsilon}$$
 so that $Z_{\epsilon}(\omega) = -\nabla \omega_{\epsilon} \cdot ((u\omega)_{\epsilon} - u_{\epsilon}\omega_{\epsilon}) = 0.$

 ω_{ν} solves heat equation.

Heat kernel estimates and homogeneity of ω give $\|Z^{\nu}(\omega)\|_{L^{1}([0,t]\times\mathbb{R}^{2})} = \frac{4\pi^{3}}{t} + o(1), \qquad \nu \to 0^{+}, \quad t > 0.$

 $\Rightarrow Z^{\nu}(\omega)$ uniformly bounded in $L^1 \Rightarrow$ $\exists \nu_k$ and a Radon measure μ such that $Z^{\nu_k}(\omega) \rightarrow \mu$.

Study support properties of μ to identify limit.

Conclusions

- Solutions in L^2 such that $Z^T(\omega) > 0$ would suggest that nonlinear interactions are responsible for enstrophy dissipation at very high Re.
- Counterexample indicates that when the enstrophy is infinite, it is not necessary to have non-linear interactions to sustain the cascade picture.
- The behavior of radial vorticity should be the weakest among the same regularity class. Use comparison estimates for solutions to parabolic equations with spherically symmetrized data.