$\int_{0}^{m i n}$
 Unfolding Complex Singularities for the Euler Equations

Russel Caflisch
Mathematics Department
UCLA

Collaborators

Mike Siegel, NJIT
Tom Hou, Caltech
Dale Pullin, Caltech Xinwei Yu, UCLA postdoc

Funding from an FRG grant from NSF

Outline

- Complex singularities: PDE examples
- Numerical construction of complex singularities for Euler
- Unfolding complex singularities

Methods for Construction of Possible Euler Singularities

- Numerical construction
- Orszag et al (1983), Kerr (1993), Pelz (1996) ...
- Similarity solutions
- Childress et al. (1989), ...
- Complex variables
- Bardos, Benachour \& Zerner (1976), REC (1993)
- Unfolding / catastrophe theory
- Ercolani, Steele \& REC (1996)

Canonical Example 1: Cauchy-Riemann Equations

- Laplace equation in x, t

$$
u_{t t}+u_{x x}=0
$$

- Complex traveling wave solution

$$
u(x, t)=w(x+i t)+w^{*}(x-i t)
$$

- Singularities in initial data move toward the real axis.

Canonical Example 2: Burgers Equations

- Burgers equation
- Initial value problem

$$
\begin{aligned}
& u_{t}+u u_{x}=0 \\
& u(0, x)=u_{0}(x)
\end{aligned}
$$

- Characteristic form

$$
\partial_{t} u=0 \quad \text { on } \quad \partial_{t} x=u=u_{0}
$$

- Invert initial data

$$
x_{0}(u): u_{0}\left(x_{0}(u)\right)=u
$$

- Implicit solution

$$
x=x_{0}(u)+t u
$$

- Singularities

$$
\begin{array}{ll}
& u_{x}=\infty \Leftrightarrow x_{u}=0 \\
\text { i.e. } & 0=\partial_{u} x_{0}(u)+t
\end{array}
$$

Canonical Example 2: Burgers Equations (Cont)

- Burgers equation singularity condition

$$
0=\partial_{u} x_{0}(u)+t
$$

- Example
- Initial data

$$
\begin{aligned}
& u_{0}\left(x_{0}\right)=-x_{0}^{1 / 3} \\
& x_{0}(u)=-u^{3}
\end{aligned}
$$

- Singularity condition

$$
0=-3 u^{2}+t
$$

- Real singularities for $t>0$

$$
u= \pm \sqrt{t / 3}
$$

- Complex singularities for $\mathrm{t}<0$

$$
u= \pm i \sqrt{|t| / 3}
$$

- Complex singularities collide forming shock

Kelvin-Helmholtz Instability

- Moore (1979) constructed singularities through asymptotics, as traveling waves in complex plane
$-\mathrm{z}=\mathrm{x}+\mathrm{iy} \approx \gamma+(1+\mathrm{i}) \varepsilon(\sin \gamma)^{3 / 2}$
- $\gamma=$ circulation variable
- Curvature singularity in sheet
- REC and Orellana (1989) constructed solutions, including solutions with singularities and ill-posedness, starting from analytic initial data.
- Wu (2005) showed that any solution, satisfying some mild regularity conditions, is analytic for $\mathrm{t}>0$.

Vortex Sheet Singularity for Kelvin-Helmholtz

- Moore (1979)
$-\mathrm{z}=\mathrm{x}+\mathrm{iy} \approx \gamma+(1+\mathrm{i}) \varepsilon(\sin \gamma)^{3 / 2}$
- $\gamma=$ circulation variable
- Curvature in shape of sheet
- Cusp in sheet strength $\left(z_{\gamma}\right)^{-1}$

Sheet position at various times (Krasny)
CSCAMM 25 Oct 2006

Moore's Construction

(REC \& Orellana interpretation)

UCLA. Birkhoff-Rott Equation

$$
\partial_{t} z^{*}(\gamma, t)=B R(z)=\frac{1}{2 \pi i} P V \int\left(z(\gamma, t)-z\left(\gamma^{\prime}, t\right)\right)^{-1} d \gamma^{\prime}
$$

- Look for $z=\gamma+z_{+}+z_{-}$
- upper analytic Z_{+}
- lower analytic Z_{-}
- Ignore interactions between Z_{+}and Z_{-}(Moore's approx)
- Evaluate BR for lower analytic functions Z_{-}, Z_{+}^{*} by contour integration

$$
\begin{aligned}
& \partial_{t} z_{+}^{*}(\gamma, t)=B R\left(z_{-}\right)=\frac{1}{1+\partial_{\gamma} z_{-}} \\
& \partial_{t} z_{-}(\gamma, t)=B R\left(z_{+}^{*}\right)=\frac{-1}{1+\partial_{\gamma} z_{+}^{*}}
\end{aligned}
$$

- Nonlinearization of CR eqtns, complex characteristics construction of solutions with singularities

Generalizations of Moore's Construction

- Rayleigh-Taylor
- Siegel, Baker, REC (1993)
- Muskat problem (2-sided Hele-Shaw, porous media)
- REC, Howison, Siegel (2004)
- Cordoba

Complex Euler Singularities:

 Numerical Construction- Axisymmetric flow with swirl
- REC (1993)
- 2D Euler
- Pauls, Matsumoto, Frisch \& Bec (2006)
- 3D Euler (Pelz and related initial data) - talk by Siegel
- Siegel \& REC (2006)
- Singularity detection via asymptotics of fourier components

Singularity Analysis

- Fit to asymptotic form of fourier components in 1D

$$
\hat{u}_{k} \approx C k^{-\alpha} e^{-i k z_{*}} \rightarrow u \approx C\left(Z-Z_{*}\right)^{\alpha-1}
$$

- Apply 3-point fit, to get singularity parameters $\mathrm{c}, \alpha, \mathrm{z}_{*}$ as function of k
- Successful fit has $\mathrm{c}, \alpha, \mathrm{z}_{*}$ nearly independent of k
- Solution method
- Moore's approximation: $\quad u=u_{+}+u_{-}$
- u_{+}upper analytic in $z, u_{-}=u_{+}^{*}$ lower analytic, no interaction between them
- Traveling wave ansatz (Siegel's thesis 1989 for Rayleigh-Taylor)

$$
u_{+}(r, z, t)=u_{+}(r, z-i \sigma t)
$$

- Ultra-high precision,
- needed to control amplification of round-off error
- Singularity type
$-u \approx x^{-1 / 3}$
$-\omega \approx x^{-4 / 3}$
- Real singularity? No
- Violates Deng-Hou-Yu (DHY) criterion, restricted directionality

[i]. $\sqrt{11}$ Complex upper analytic solution: pure swirling flow

- Flow in periodic anulus,
$-\mathrm{r}_{1}<\mathrm{r}<\mathrm{r}_{2}$ (no normal flow BCs)
$-0<\mathrm{z}<2 \pi$ (periodic BCs)

2D Euler

Pauls, Matsumoto, Frisch \& Bec (2006)

- Solution method
- Small time asymptotics, spectral computation
- Ultra-high precision,
- needed singularity detection, since singularities are far from reals
- Singularity type
$-\omega \approx x^{-\beta}$ with $5 / 6 \leq \beta \leq 1$
- Real singularity? No

Fig. 3. Local prefactor exponent $\alpha_{\mathrm{loc}}(k)$ versus wavenumber for two values of the slope.

- Vorticity does not grow in 2D \rightarrow no singularities
- $u=(u, v, 0)$
$\partial_{t} \omega+u \cdot \nabla \omega=\omega \cdot \nabla u=0$
- $\omega=(0,0, \zeta)$

Unfolding Singularities

- General method

Unfolding Singularities

- General method
- Unfolding variable η
- Mapping $q(x, t, \eta)=0$ defines relation between ($x, t)$ and η
- Rewrite PDE in terms of (x, t, η)
- $u=u(x, t, \eta)$
- $\partial_{t}=\partial_{t}-q_{\eta}{ }^{-1} \eta_{t} \partial_{\eta}$
- Special method
- Include $\operatorname{sqrt}(\xi)$ in solution
$-\xi=\xi(\mathrm{x}, \mathrm{t})$ a smooth function
- Works only for a single sqrt singularity

Boussinesq and Unfolding

Boussinesq eqtns
Unfolding ansatz

$$
\begin{aligned}
& \left(\partial_{t}+\mathbf{u} \cdot \nabla\right) \rho=f \\
& \left(\partial_{t}+\mathbf{u} \cdot \nabla\right) \zeta=-\partial_{z} \rho+g \\
& \mathbf{u}=(u, v)=\nabla^{\perp} \psi=\left(-\partial_{z} \psi, \partial_{r} \psi\right) \\
& \zeta=\nabla^{2} \psi=-\partial_{z} u+\partial_{r} v .
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{u}=\mathbf{u}_{0}+\xi^{\frac{1}{2}} \mathbf{u}_{1} \\
\rho=\rho_{0}+\xi^{\frac{1}{2}} \rho_{1} \\
\zeta=\zeta_{0}+\xi^{-\frac{1}{2}} \zeta_{1} \\
\psi=\psi_{0}+\xi^{\frac{3}{2}} \psi_{1}
\end{gathered}
$$

$\mathrm{u}_{\mathrm{i}}, \rho_{\mathrm{i}}, \psi_{\mathrm{i}}, \zeta_{\mathrm{i}}, \xi$ smooth functions

Unfolded eqtns

- Div

$$
\begin{aligned}
& \mathbf{u}_{0}=\nabla^{\perp} \psi_{0} \\
& \mathbf{u}_{1}=\frac{3}{2} \psi_{1} \nabla^{\perp} \xi+\xi \nabla^{\perp} \psi_{1}
\end{aligned}
$$

- ζ definition

$$
\begin{aligned}
& \zeta_{0}=\nabla \times \mathbf{u}_{0} \\
& \zeta_{1}=\frac{1}{2} \nabla \xi \times \mathbf{u}_{1}+\xi \nabla \times \mathbf{u}_{1}
\end{aligned}
$$

- desingularization

$$
\xi_{t}+\mathbf{u}_{0} \cdot \nabla \xi=0
$$

- ρ eqtn

$$
\begin{aligned}
& \left(\partial_{t}+\mathbf{u}_{0} \cdot \nabla\right) \rho_{0}+\frac{1}{2} \alpha \xi \rho_{1}+\xi \mathbf{u}_{1} \cdot \nabla \rho_{1}=f \\
& \left(\partial_{t}+\mathbf{u}_{0} \cdot \nabla\right) \rho_{1}+\mathbf{u}_{1} \cdot \nabla \rho_{0}=0
\end{aligned}
$$

- ζ eqtn

$$
\begin{aligned}
& \left(\partial_{t}+\mathbf{u}_{0} \cdot \nabla\right) \zeta_{1}+\xi \mathbf{u}_{1} \cdot \nabla \zeta_{0}=-\xi \partial_{2} \rho_{1}-\frac{1}{2} \rho_{1} \partial_{2} \xi \\
& \left(\partial_{t}+\mathbf{u}_{0} \cdot \nabla\right) \zeta_{0}+\mathbf{u}_{1} \cdot \nabla \zeta_{1}-\frac{1}{2} \zeta_{1} \alpha \xi=-\partial_{z} \rho_{0}+g .
\end{aligned}
$$

Unfolded eqtns

- Div

$$
\begin{aligned}
& \mathbf{u}_{0}=\nabla^{\perp} \psi_{0} \\
& \mathbf{u}_{1}=\frac{3}{2} \psi_{1} \nabla^{\perp} \xi+\xi \nabla^{\perp} \psi_{1}
\end{aligned}
$$

- ζ definition

$$
\begin{aligned}
& \zeta_{0}=\nabla \times \mathbf{u}_{0} \\
& \zeta_{1}=\frac{1}{2} \nabla \xi \times \mathbf{u}_{1}+\xi \nabla \times \mathbf{u}_{1}
\end{aligned}
$$

- desingularization

$$
\xi_{t}+\mathbf{u}_{0} \cdot \nabla \xi=0
$$

Unfolded eqtns

- Div

$$
\begin{aligned}
& \mathbf{u}_{0}=\nabla^{\perp} \psi_{0} \\
& \mathbf{u}_{1}=\frac{3}{2} \psi_{1} \nabla^{\perp} \xi+\xi \nabla^{\perp} \psi_{1}
\end{aligned}
$$

- ζ definition

$$
\begin{aligned}
& \zeta_{0}=\nabla \times \mathbf{u}_{0} \\
& \zeta_{1}=\frac{1}{2} \nabla \xi \times \mathbf{u}_{1}+\xi \nabla \times \mathbf{u}_{1}
\end{aligned}
$$

- desingularization

$$
\xi_{t}+\mathbf{u}_{0} \cdot \nabla \xi=0
$$

- ρ eqtn

$$
\begin{aligned}
& \left(\partial_{t}+\mathbf{u}_{0} \cdot \nabla\right) \rho_{0}+\frac{1}{2} \alpha \xi \rho_{1}+\xi \mathbf{u}_{1} \cdot \nabla \rho_{1}=f \\
& \left(\partial_{t}+\mathbf{u}_{0} \cdot \nabla\right) \rho_{1}+\mathbf{u}_{1} \cdot \nabla \rho_{0}=0
\end{aligned}
$$

- ζ eqtn

$$
\begin{aligned}
& \left(\partial_{t}+\mathbf{u}_{0} \cdot \nabla\right) \zeta_{1}=-\frac{1}{2} \rho_{1} \partial_{z} \xi \quad \mathbf{u}_{1} \cdot \nabla \zeta_{0}=-\partial_{z} \rho_{1} \\
& \left(\partial_{t}+\mathbf{u}_{0} \cdot \nabla\right) \zeta_{0}+\mathbf{u}_{1} \cdot \nabla \zeta_{1}-\frac{1}{2} \zeta_{1} \alpha \xi=-\partial_{z} \rho_{0}+g
\end{aligned}
$$

- This system is well-posed but nonstandard.
- Unfolding through mapping $\mathrm{q}(\mathrm{x}, \mathrm{t}, \eta)=0$ leads to a well-posed system that is more complicated but more standard.

Conclusions

- Inviscid singularities may play a role in viscous turbulence.
- Complex variables approach successful for interface problems, including singularity formation and global existence.
- Complex singular solutions for Euler constructed by special methods.
- Unfolding of weak complex singularities and their dynamics.
- Attempting to turn this into a real singular solution for Euler.

Equations for u^{+}

$$
\begin{gathered}
r^{-1} \partial_{r}\left(r u_{r}^{+}\right)+\partial_{z} u_{z}^{+}=0 \\
\left(\bar{u}_{z}-i \sigma\right) \partial_{z} u_{z}^{+}+u_{r}^{+} \partial_{r} \bar{u}_{z}+\partial_{z} p^{+}=a \\
\left(\bar{u}_{z}-i \sigma\right) \partial_{z} u_{r}^{+}-2 r^{-1} \bar{u}_{\theta} u_{\theta}^{+}+\partial_{r} p^{+}=b \\
\left(\bar{u}_{z}-i \sigma\right) \partial_{z} u_{\theta}^{+}+u_{r}^{+} \partial_{r} \bar{u}_{\theta}+r^{-1} \bar{u}_{\theta} u_{r}^{+}=c \\
a=-u^{+} \cdot \nabla u_{z}^{+} \\
b=-u^{+} \cdot \nabla u_{r}^{+}+r^{-1} u_{\theta}^{\prime 2} \\
c=-u^{+} \cdot \nabla u_{\theta}^{+}-r^{-1} u_{\theta}^{+} u_{r}^{+} \\
u_{r}^{+} \bar{\omega}_{z}=r^{-1} \partial_{r}\left(r \bar{u}_{\theta}\right) u_{r}^{+} \\
\operatorname{cSCAMM} 25 \text { Oct 2006 }
\end{gathered}
$$

Simplified eqtn for $\mathrm{u}^{+}{ }_{\mathrm{r}}$

$$
\partial_{r}\left(r^{-1} \partial_{r}\left(r u_{r}^{+}\right)\right)+\partial_{z}^{2} u_{r}^{+}-\eta u_{r}^{+}=d
$$

$$
\begin{aligned}
& \eta=\left(\bar{u}_{z}-i \sigma\right)^{-1}\left\{\partial_{r}^{2} \bar{u}_{z}-r^{-1} \partial_{r} \bar{u}_{z}-2 r^{-1}\left(\bar{u}_{z}-i \sigma\right)^{-1} \bar{u}_{\theta} \bar{\omega}_{z}\right\} \\
& d=\left(\bar{u}_{z}-i \sigma\right)^{-1}\left\{-\partial_{r} a+\partial_{z} b+2 r^{-1} \bar{u}_{\theta}\left(\bar{u}_{z}-i \sigma\right)^{-1} c\right\}
\end{aligned}
$$

Instability of u_{k} equations

- Solution of k eqtn depends on k^{\prime} with $\mathrm{k}^{\prime}<\mathrm{k}$
- Roundoff error grows as k increases
- Controlled through use of ultra high precision
- MPFUN by David Bailey
- Limitation on size of computation

Hele-Shaw

- Flow through porous media with a free boundary
- Darcy's law and incompressibility

$$
\mathbf{u}=V \mathbf{j}-k \nabla p \quad \nabla \cdot \mathbf{u}=0
$$

- Boundary conditions

$$
p=0 \quad \mathbf{u} \cdot \mathbf{n}=V_{n}
$$

- Exact solution with cusp singularities in the boundary

Hele-Shaw

- The zero surface tension limit $\gamma \rightarrow 0$ is singular. Singularities in the complex plane move toward the real boundary, but they can be preceded by daughter singularities (Tanveer, Siegel, ...).

Muskat Problem

- Two sided Hele-Shaw
- Darcy's law and incompressibility ($\mathrm{i}=1,2$)

$$
\mathbf{u}_{i}=V \mathbf{j}-k_{i} \nabla p_{i} \quad \nabla \cdot \mathbf{u}_{i}=0
$$

- Boundary conditions

$$
p_{1}=p_{2}, \quad \mathbf{u}_{1} \cdot \mathbf{n}=\mathbf{u}_{2} \cdot \mathbf{n}=V_{n}
$$

- Singularities
- No exact solutions
- Analysis by Siegel, Howison \& REC
- Global existence in stable case (more viscous fluid moving into less viscous)
- Initial data in Sobolev space, then becomes analytic for $\mathrm{t}>0$
- Analytic construction of singularities in unstable case
- Curvature singularities, cusps not analyzed

Derivation of Singularity Requirements for Inviscid Energy Dissipation

- For singularity set S of codimension κ, singularity order α

$$
\begin{aligned}
& d x=r^{\kappa-1} d r d x_{S} \quad r=\operatorname{dist}(\mathrm{S}) \\
& u \approx r^{\alpha}
\end{aligned}
$$

- Time derivative of energy $u_{t}+u \cdot \nabla u+\nabla p=0$

$$
\begin{gathered}
(d / d t) \int|u|^{2} d x=\int_{u \cdot(u \cdot \nabla) u+u \cdot \nabla p d x} \\
=\int_{S} \int_{r^{3 \alpha-1}} r^{\kappa-1} d r d x_{S}
\end{gathered}
$$

- The convective integral is nonzero, only if it isn't absolutely integrable; i.e.

$$
\begin{gathered}
3 \alpha-1+\kappa-1<-1 \\
3 \alpha+\kappa<1
\end{gathered}
$$

Upper analytic solutions

- Look for upper analytic solution ($k \geq 0$)

$$
\begin{array}{lrl}
u=\bar{u}+u^{+} \quad \bar{u} & =\left(0, \bar{u}_{z}, \bar{u}_{\theta}\right)(r) \\
u^{+} & =\left(u_{r}^{+}, u_{z}^{+}, u_{\theta}^{+}\right)(r, z) \\
u^{+}(r, z)=\sum_{k \geq 1} \hat{u}_{k}(r) e^{i k z} \\
u^{+}(r, z, t)=\sum_{k \geq 1} \hat{u}_{k}(r) e^{i k z+\sigma k t}
\end{array}
$$

- Because wavenumbers add, the coupling is one way (Siegel)

$$
\begin{aligned}
M_{k} \hat{u}_{k} & =A_{k}\left(\sigma, \hat{u}_{0}, \ldots, \hat{u}_{k-1}\right) \\
M_{k} & =M_{k}\left(\sigma, \hat{u}_{0}\right)
\end{aligned}
$$

3D Euler (Pelz initial data)

Siegel \& REC (2006)

- Solution method
- Moore's approximation: $\quad u=u_{+}+u_{-}$
- u_{+}upper analytic in $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u}_{-}=\mathrm{u}_{+}{ }^{*}$ lower analytic, no interaction between them
- Traveling wave ansatz

$$
u_{+}(x, y, z, t)=u_{+}(x, y, z-i \sigma t)
$$

- No need for ultra-high precision
- Highly symmetric (Kida)
- Singularity type
$-\mathrm{u}_{+} \approx \varepsilon \mathrm{X}^{-1 / 2}$
$-\omega_{+} \approx \varepsilon \mathrm{x}^{-3 / 2}$
- Real singularity??

- Satisfies known singularity criteria
- Attempting to construct real singular solution as $u=u_{+}+u_{-}+\varepsilon^{2} u_{c}$

