

## Unfolding Complex Singularities for the Euler Equations

Russel Caflisch Mathematics Department UCLA



#### **Collaborators**

Mike Siegel, NJIT Tom Hou, Caltech Dale Pullin, Caltech Xinwei Yu, UCLA postdoc

#### **Funding from an FRG grant from NSF**

# 

## Outline

- Complex singularities: PDE examples
- Numerical construction of complex singularities for Euler
- Unfolding complex singularities

# Methods for Construction of Possible Euler Singularities

- Numerical construction
  - Orszag et al (1983), Kerr (1993), Pelz (1996) ...
- Similarity solutions
  - Childress et al. (1989), ...
- Complex variables
  - Bardos, Benachour & Zerner (1976), REC (1993)
- Unfolding / catastrophe theory
  - Ercolani, Steele & REC (1996)



• Singularities in initial data move toward the real axis.

# Canonical Example 2: Burgers Equations

- Burgers equation
  - Initial value problem

$$u_t + uu_x = 0$$
$$u(0, x) = u_0(x)$$

- Characteristic form

$$\partial_t u = 0$$
 on  $\partial_t x = u = u_0$ 

Invert initial data

$$x_0(u): u_0(x_0(u)) = u$$

Implicit solution

 $x = x_0(u) + tu$ 

• Singularities

$$u_x = \infty \Leftrightarrow x_u = 0$$

i.e.  $0 = \partial_u x_0(u) + t$ 

## Canonical Example 2: UCIA Burgers Equations (Cont)

• Burgers equation singularity condition

 $0 = \partial_u x_0(u) + t$ 

- Example
  - Initial data

$$u_0(x_0) = -x_0^{1/3}$$
$$x_0(u) = -u^3$$

- Singularity condition  $0 = -3u^2 + t$
- Real singularities for t>0  $u = \pm \sqrt{t/3}$

$$u = \pm i\sqrt{|t|/3}$$



• Complex singularities collide forming shock

# Kelvin-Helmholtz Instability

- Moore (1979) constructed singularities through asymptotics, as traveling waves in complex plane
  - $z = x + iy \approx \gamma + (1+i) \epsilon (\sin \gamma)^{3/2}$
  - $\gamma =$ circulation variable
  - Curvature singularity in sheet
- REC and Orellana (1989) constructed solutions, including solutions with singularities and ill-posedness, starting from analytic initial data.
- Wu (2005) showed that any solution, satisfying some mild regularity conditions, is analytic for t > 0.

### Vortex Sheet Singularity for Kelvin-Helmholtz

- Moore (1979)
  - $z = x + iy \approx \gamma + (1+i) \epsilon (\sin \gamma)^{3/2}$
  - $\gamma =$  circulation variable
  - Curvature in shape of sheet
  - Cusp in sheet strength  $(z_{\gamma})^{-1}$



#### Moore's Construction

(REC & Orellana interpretation) Birkhoff-Rott Equation

$$\partial_t z^*(\gamma, t) = BR(z) = \frac{1}{2\pi i} PV \int (z(\gamma, t) - z(\gamma', t))^{-1} d\gamma'$$

- Look for  $z = \gamma + z_+ + z_-$ 
  - upper analytic  $Z_+$
  - lower analytic  $Z_{-}$
- Ignore interactions between  $z_+$  and  $z_-$  (Moore's approx)
  - Evaluate BR for lower analytic functions  $z_{-}, z_{+}^{*}$  by contour integration

$$\partial_t z_+^*(\gamma, t) = BR(z_-) = \frac{1}{1 + \partial_\gamma z_-}$$
$$\partial_t z_-(\gamma, t) = BR(z_+^*) = \frac{-1}{1 + \partial_\gamma z_+^*}$$

- Nonlinearization of CR eqtns, complex characteristics construction of solutions with singularities

# Generalizations of Moore's Construction

- Rayleigh-Taylor
  - Siegel, Baker, REC (1993)
- Muskat problem (2-sided Hele-Shaw, porous media)
  - REC, Howison, Siegel (2004)
  - Cordoba



### Complex Euler Singularities: Numerical Construction

- Axisymmetric flow with swirl
  - REC (1993)
- 2D Euler
  - Pauls, Matsumoto, Frisch & Bec (2006)
- 3D Euler (Pelz and related initial data) talk by Siegel
  - Siegel & REC (2006)
- Singularity detection via asymptotics of fourier components

# Singularity Analysis

• Fit to asymptotic form of fourier components in 1D

$$\hat{u}_k \approx ck^{-\alpha}e^{-ikz_*} \longrightarrow u \approx c(z-z_*)^{\alpha-1}$$

- Apply 3-point fit, to get singularity parameters  $c,\alpha,z_*$  as function of k
  - Successful fit has  $c, \alpha, z_*$  nearly independent of k

### Axisymmetric flow with swirl REC (1993)

- Solution method
  - Moore's approximation:
    - $u_+$  upper analytic in z,  $u_- = u_+^*$  lower analytic, no interaction between them

 $u = u_+ + u_-$ 

- Traveling wave ansatz (Siegel's thesis 1989 for Rayleigh-Taylor)

$$u_+(r,z,t) = u_+(r,z-i\sigma t)$$

- Ultra-high precision,
  - needed to control amplification of round-off error
- Singularity type
  - $u \approx x^{-1/3}$
  - $-\omega \approx x^{-4/3}$
- Real singularity? No
  - Violates Deng-Hou-Yu (DHY) criterion, restricted directionality

# Complex upper analytic solution:pure swirling flow

- Flow in periodic anulus,
  - $r_1 < r < r_2$  (no normal flow BCs)
  - $0 < z < 2 \pi$  (periodic BCs)



### 2D Euler

#### Pauls, Matsumoto, Frisch & Bec (2006)

- Solution method
  - Small time asymptotics, spectral computation
  - Ultra-high precision,
    - needed singularity detection, since singularities are far from reals
- Singularity type
  - $-~\omega\approx x^{-\beta}$  with  $5/6\leq\beta\leq 1$
- Real singularity? No
  - Vorticity does not grow in  $2D \rightarrow no$  singularities
  - $\mathbf{u} = (\mathbf{u}, \mathbf{v}, \mathbf{0}) \quad \partial_t \boldsymbol{\omega} + \boldsymbol{u} \cdot \nabla \boldsymbol{\omega} = \boldsymbol{\omega} \cdot \nabla \boldsymbol{u} = \mathbf{0}$
  - $\omega = (0,0, \zeta)$



Fig. 3. Local prefactor exponent  $\alpha_{loc}(k)$  versus wavenumber for two values of the slope.



• General method

# Unfolding Singularities

#### • General method

- Unfolding variable  $\eta$
- Mapping  $q(x,t, \eta)=0$  defines relation between (x, t) and  $\eta$
- Rewrite PDE in terms of  $(x, t, \eta)$ 
  - $u = u(x, t, \eta)$
  - $\partial_t = \partial_t q_\eta^{-1} \eta_t \partial_\eta$
- Special method
  - Include  $sqrt(\xi)$  in solution
  - $\xi = \xi(x,t)$  a smooth function
  - Works only for a single sqrt singularity



Boussinesq eqtns

Unfolding ansatz

$$(\partial_t + \mathbf{u} \cdot \nabla)\rho = f$$
  

$$(\partial_t + \mathbf{u} \cdot \nabla)\zeta = -\partial_z \rho + g$$
  

$$\mathbf{u} = (u, v) = \nabla^{\perp} \psi = (-\partial_z \psi, \partial_r \psi)$$
  

$$\zeta = \nabla^2 \psi = -\partial_z u + \partial_r v.$$

$$\mathbf{u} = \mathbf{u}_0 + \boldsymbol{\xi}^{\frac{1}{2}} \mathbf{u}_1$$
$$\rho = \rho_0 + \boldsymbol{\xi}^{\frac{1}{2}} \rho_1$$
$$\boldsymbol{\zeta} = \boldsymbol{\zeta}_0 + \boldsymbol{\xi}^{-\frac{1}{2}} \boldsymbol{\zeta}_1$$
$$\boldsymbol{\psi} = \boldsymbol{\psi}_0 + \boldsymbol{\xi}^{\frac{3}{2}} \boldsymbol{\psi}_1$$

 $u_i,\,\rho_i\,,\,\psi_i\,,\,\zeta_i$  ,  $\xi$  smooth functions



•

### Unfolded eqtns

Div  $\mathbf{u}_{0} = \nabla^{\perp} \boldsymbol{\psi}_{0}$   $\mathbf{u}_{1} = \frac{3}{2} \boldsymbol{\psi}_{1} \nabla^{\perp} \boldsymbol{\xi} + \boldsymbol{\xi} \nabla^{\perp} \boldsymbol{\psi}_{1}$ 

• *ζ* definition

$$\zeta_0 = \nabla \times \mathbf{u}_0$$
$$\zeta_1 = \frac{1}{2} \nabla \boldsymbol{\xi} \times \mathbf{u}_1 + \boldsymbol{\xi} \nabla \times \mathbf{u}_1$$

• desingularization

$$\xi_t + \mathbf{u}_0 \cdot \nabla \xi = 0$$

• ρ eqtn

$$(\partial_t + \mathbf{u}_0 \cdot \nabla)\rho_0 + \frac{1}{2}\alpha\xi\rho_1 + \xi\mathbf{u}_1 \cdot \nabla\rho_1 = f$$
$$(\partial_t + \mathbf{u}_0 \cdot \nabla)\rho_1 + \mathbf{u}_1 \cdot \nabla\rho_0 = 0$$

$$\zeta \text{ eqtn}$$
  

$$(\partial_t + \mathbf{u}_0 \cdot \nabla)\zeta_1 + \xi \mathbf{u}_1 \cdot \nabla \zeta_0 = -\xi \partial_z \rho_1 - \frac{1}{2} \rho_1 \partial_z \xi$$
  

$$(\partial_t + \mathbf{u}_0 \cdot \nabla)\zeta_0 + \mathbf{u}_1 \cdot \nabla \zeta_1 - \frac{1}{2} \zeta_1 \alpha \xi = -\partial_z \rho_0 + g.$$



### Unfolded eqtns

• Div  $\mathbf{u}_{0} = \nabla^{\perp} \boldsymbol{\psi}_{0}$   $\mathbf{u}_{1} = \frac{3}{2} \boldsymbol{\psi}_{1} \nabla^{\perp} \boldsymbol{\xi} + \boldsymbol{\xi} \nabla^{\perp} \boldsymbol{\psi}_{1}$ 

• *ζ* definition

$$\zeta_0 = \nabla \times \mathbf{u}_0$$
$$\zeta_1 = \frac{1}{2} \nabla \xi \times \mathbf{u}_1 + \xi \nabla \times \mathbf{u}_1$$

• desingularization

$$\boldsymbol{\xi}_t + \mathbf{u}_0 \cdot \nabla \boldsymbol{\xi} = \mathbf{0}$$

• ρ eqtn

$$(\partial_t + \mathbf{u}_0 \cdot \nabla)\rho_0 + \frac{1}{2}\alpha\xi\rho_1 + \xi\mathbf{u}_1 \cdot \nabla\rho_1 = \mathbf{f}$$
$$(\partial_t + \mathbf{u}_0 \cdot \nabla)\rho_1 + \mathbf{u}_1 \cdot \nabla\rho_0 = 0$$

$$\zeta \operatorname{eqtn}$$
  

$$(\partial_t + \mathbf{u}_0 \cdot \nabla)\zeta_1 + \xi \mathbf{u}_1 \cdot \nabla \zeta_0 = -\xi \partial_z \rho_1 - \frac{1}{2} \rho_1 \partial_z \xi$$
  

$$(\partial_t + \mathbf{u}_0 \cdot \nabla)\zeta_0 + \mathbf{u}_1 \cdot \nabla \zeta_1 - \frac{1}{2} \zeta_1 \alpha \xi = -\partial_z \rho_0 + \mathbf{g}.$$



### Unfolded eqtns

Div  $\mathbf{u}_{0} = \nabla^{\perp} \boldsymbol{\psi}_{0}$   $\mathbf{u}_{1} = \frac{3}{2} \boldsymbol{\psi}_{1} \nabla^{\perp} \boldsymbol{\xi} + \boldsymbol{\xi} \nabla^{\perp} \boldsymbol{\psi}_{1}$ 

- $\zeta$  definition
  - $\zeta_0 = \nabla \times \mathbf{u}_0$  $\zeta_1 = \frac{1}{2} \nabla \xi \times \mathbf{u}_1 + \xi \nabla \times \mathbf{u}_1$
- desingularization

 $\boldsymbol{\xi}_t + \mathbf{u}_0 \cdot \nabla \boldsymbol{\xi} = \mathbf{0}.$ 

ρ eqtn

$$(\partial_t + \mathbf{u}_0 \cdot \nabla)\rho_0 + \frac{1}{2}\alpha\xi\rho_1 + \xi\mathbf{u}_1 \cdot \nabla\rho_1 = \mathbf{f}$$
$$(\partial_t + \mathbf{u}_0 \cdot \nabla)\rho_1 + \mathbf{u}_1 \cdot \nabla\rho_0 = 0$$

$$\zeta \operatorname{eqtn}$$

$$(\partial_{t} + \mathbf{u}_{0} \cdot \nabla)\zeta_{1} = -\frac{1}{2}\rho_{1}\partial_{z}\xi \qquad \mathbf{u}_{1} \cdot \nabla\zeta_{0} = -\partial_{z}\rho_{1}$$

$$(\partial_{t} + \mathbf{u}_{0} \cdot \nabla)\zeta_{0} + \mathbf{u}_{1} \cdot \nabla\zeta_{1} - \frac{1}{2}\zeta_{1}\alpha\xi = -\partial_{z}\rho_{0} + \mathbf{g}.$$

- This system is well-posed but nonstandard.
- Unfolding through mapping  $q(x,t, \eta)=0$  leads to a well-posed system that is more complicated but more standard.

## Conclusions

- Inviscid singularities may play a role in viscous turbulence.
- Complex variables approach successful for interface problems, including singularity formation and global existence.
- Complex singular solutions for Euler constructed by special methods.
- Unfolding of weak complex singularities and their dynamics.
- Attempting to turn this into a real singular solution for Euler.

# 

### Equations for u<sup>+</sup>

$$r^{-1}\partial_{r}(ru_{r}^{+}) + \partial_{z}u_{z}^{+} = 0$$

$$(\overline{u}_{z} - i\sigma)\partial_{z}u_{z}^{+} + u_{r}^{+}\partial_{r}\overline{u}_{z} + \partial_{z}p^{+} = a$$

$$(\overline{u}_{z} - i\sigma)\partial_{z}u_{r}^{+} - 2r^{-1}\overline{u}_{\theta}u_{\theta}^{+} + \partial_{r}p^{+} = b$$

$$(\overline{u}_{z} - i\sigma)\partial_{z}u_{\theta}^{+} + u_{r}^{+}\partial_{r}\overline{u}_{\theta} + r^{-1}\overline{u}_{\theta}u_{r}^{+} = c$$

$$a = -u^{+} \cdot \nabla u_{z}^{+}$$

$$b = -u^{+} \cdot \nabla u_{r}^{+} + r^{-1}u_{\theta}^{2}$$

$$c = -u^{+} \cdot \nabla u_{\theta}^{+} - r^{-1}u_{\theta}^{+}u_{r}^{+}$$

$$u_{r}^{+}\overline{\omega}_{z} = r^{-1}\partial_{r}(r\overline{u}_{\theta})u_{r}^{+}$$



$$\partial_r (r^{-1} \partial_r (r u_r^+)) + \partial_z^2 u_r^+ - \eta u_r^+ = d$$

$$\eta = (\overline{u}_z - i\sigma)^{-1} \{ \partial_r^2 \overline{u}_z - r^{-1} \partial_r \overline{u}_z - 2r^{-1} (\overline{u}_z - i\sigma)^{-1} \overline{u}_\theta \overline{\omega}_z \}$$
$$d = (\overline{u}_z - i\sigma)^{-1} \{ -\partial_r a + \partial_z b + 2r^{-1} \overline{u}_\theta (\overline{u}_z - i\sigma)^{-1} c \}$$

# $\prod_{k=1}^{n} I$ Instability of $u_k$ equations

- Solution of k eqtn depends on k' with k'<k
- Roundoff error grows as k increases
- Controlled through use of ultra high precision
  - MPFUN by David Bailey
- Limitation on size of computation

# 

### Hele-Shaw

- Flow through porous media with a free boundary
  - Darcy's law and incompressibility

$$\mathbf{u} = V\mathbf{j} - k\nabla p \qquad \nabla \cdot \mathbf{u} = 0$$

- Boundary conditions p = 0  $\mathbf{u} \cdot \mathbf{n} = V_n$
- Exact solution with cusp singularities in the boundary



# $\begin{array}{l} \label{eq:head} \mbox{Hele-Shaw} \\ \mbox{The zero surface tension limit } \gamma \rightarrow 0 \mbox{ is singular. Singularities in the complex plane move toward the real boundary, but they can be} \end{array}$



preceded by daughter singularities (Tanveer, Siegel, ...).

## Muskat Problem

- Two sided Hele-Shaw
  - Darcy's law and incompressibility (i=1,2)

$$\mathbf{u}_i = V\mathbf{j} - k_i \nabla p_i \qquad \nabla \cdot \mathbf{u}_i = 0$$

Boundary conditions

$$p_1 = p_2, \qquad \mathbf{u}_1 \cdot \mathbf{n} = \mathbf{u}_2 \cdot \mathbf{n} = V_n$$



- Singularities
  - No exact solutions
- Analysis by Siegel, Howison & REC
  - Global existence in stable case (more viscous fluid moving into less viscous)
    - Initial data in Sobolev space, then becomes analytic for t>0
  - Analytic construction of singularities in unstable case
    - Curvature singularities, cusps not analyzed

### Derivation of Singularity Requirements for Inviscid Energy Dissipation

• For singularity set S of codimension  $\kappa$ , singularity order  $\alpha$ 

$$dx = r^{\kappa-1} dr dx_{s} \qquad r = \operatorname{dist}(S)$$

$$u \approx r^{\alpha}$$
• Time derivative of energy  $u_{t} + u \cdot \nabla u + \nabla p = 0$ 

$$(d/dt) \int |u|^{2} dx = \int u \cdot (u \cdot \nabla)u + u \cdot \nabla p dx$$

$$= \int_{S} \int r^{3\alpha-1} r^{\kappa-1} dr dx_{s}$$

$$r = \operatorname{dist}(S)$$

$$Codim = \kappa$$

$$u \approx r^{\alpha}$$

• The convective integral is nonzero, only if it isn't absolutely integrable; i.e.  $3\alpha - 1 + \kappa - 1 < -1$ 

 $3\alpha + \kappa < 1$ 

# Upper analytic solutions

• Look for upper analytic solution ( $k \ge 0$ )

$$u = \overline{u} + u^{+} \qquad \qquad \overline{u} = (0, \overline{u}_{z}, \overline{u}_{\theta})(r)$$
$$u^{+} = (u_{r}^{+}, u_{z}^{+}, u_{\theta}^{+})(r, z)$$

$$u^{+}(r,z) = \sum_{k\geq 1} \hat{u}_{k}(r)e^{ikz}$$
$$u^{+}(r,z,t) = \sum_{k\geq 1} \hat{u}_{k}(r)e^{ikz+\sigma kt}$$

• Because wavenumbers add, the coupling is one way (Siegel)  $M_k \hat{u}_k = A_k(\sigma, \hat{u}_0, \dots, \hat{u}_{k-1})$   $M_k = M_k(\sigma, \hat{u}_0)$ 

## 3D Euler (Pelz initial data)

Siegel & REC (2006)

- Solution method
  - Moore's approximation:  $u = u_+ + u_-$ 
    - $u_+$  upper analytic in x,y,z,  $u_- = u_+^*$  lower analytic, no interaction between them
  - Traveling wave ansatz

$$u_+(x, y, z, t) = u_+(x, y, z - i\sigma t)$$

- No need for ultra-high precision
- Highly symmetric (Kida)
- Singularity type
  - $\ u_{\scriptscriptstyle +} \approx \epsilon \ x \ {}^{\text{-}1/2}$
  - $-~\omega_{\scriptscriptstyle +} \approx \epsilon \; x^{-3/2}$
- Real singularity? ?
  - Satisfies known singularity criteria
  - Attempting to construct real singular solution as  $u = u_+ + u_- + \varepsilon^2 u_c$

