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0. Introduction

We are concerned on the incompressible fluid equations in R3:

(E)





∂v

∂t
+ (v · ∇)v = −∇p

div v = 0,

v(x, 0) = v0(x),

where v = (v1, v2, v3), vj = vj(x, t), j = 1, 2, 3, is the fluid velocity,
and p = p(x, t) is the pressure(L. Euler, 1757).
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• Local in time existence of classical solution: For v0 ∈ Hm(R3),
m > 5/2 the classical solution exists uniquely at least for ‘small
time’(Kato, Temam, Brezis,... )

• An outstanding open question:

Is there any local classical solution which evolves into a
singularity in a finite time ?
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• Beale-Kato-Majda’s Blow-up criterion(’84):

lim sup
t→T∗

‖v(t)‖Hm = ∞ ⇔
∫ T∗

0

‖ω(t)‖L∞dt = ∞,

where m > 5/2, and ω =curl v is the vorticity.

• Refinements:
(Note the embeddings: L∞ ↪→ BMO ↪→ Ḃ0

∞,∞)
The integrand ‖ω(t)‖L∞ is replaced by
‖ω(t)‖BMO(Kozono-Taniuchi[’00]), and later by
‖ω(t)‖Ḃ0

∞,∞
(C.[’01, ’02]; Kozono-Ogawa-Taniuchi[’02];

Planchon[’03])
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• In this talk we are concerned on the possibility of self-similar
type of blow-ups of the Euler equations.

• The self-similar singularity is one of the most popular scenarios in
search of finite time singularity in nonlinear PDEs.
(e.g nonlinear Schrödinger equations, porous medium equation, ...)
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2. Nonexistence of self-similar singularity

• The Euler system (E) has scaling property that if (v, p) is a
solution, then for any λ > 0 and α ∈ R the functions

vλ,α(x, t) = λαv(λx, λα+1t), pλ,α(x, t) = λ2αp(λx, λα+1t)

are also solutions with the initial data vλ,α
0 (x) = λαv0(λx).

• In view of this it would be interesting to check if there exists any
nontrivial solution (v(x, t), p(x, t)) of the form(α 6= −1),





v(x, t) =
1

(T∗ − t)
α

α+1
V

(
x

(T∗ − t)
1

α+1

)
,

p(x, t) =
1

(T∗ − t)
2α

α+1
P

(
x

(T∗ − t)
1

α+1

)

: self-similar singular solution
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• Substituting this into the Euler equation, we find that (V, P )
should be a solution of the system

(SSE)





α

α + 1
V +

1
α + 1

(y · ∇)V + (V · ∇)V = −∇P

div V = 0,

which could be regarded as the Euler version of the Leray
equations:

(Leray)





1
2
V +

1
2
(y · ∇)V + (V · ∇)V = −∇P + ∆V

div V = 0,
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• Nonexistence of the self-similar blowing up solutions (in L3(R3))
for the 3D Navier-Stokes equations was first proved by
Nečas-Ružička -Šverák (’96)
(extended to the case Lp(R3), p > 3 by Tsai in ’98)

• Use of the maximum principle was crucial in the above results for
the Navier-Stokes equations.

• To be more specific let us define a scalar function Π and an
elliptic operator L respectively as

Π =
1
2
|V |2 + P +

1
2
y · V,

L = ∆ − (V +
1
2
y) · ∇.
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• If (V, P ) is a solution of the Leray equations, then we have the
pointwise inequality,

L Π ≥ 0.

This provides us the desired maximum principle.

• In the derivation of the above inequality the existence of the
laplacian(dissipation) term in the Leray equations is essential.

• Since the laplacian term is absent in the self-similar Euler
equations, we cannot expect to have similar maximum principle.
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• Therefore, we need different argument from Nečas-Ružička
-Šverák’s or Tsai’s to exclude the self-similar singularity.

• Previous results for self-similar Euler system(SSE):

Theorem 1 (C. ’04) If V ∈ H1(R3) is a nontrivial(nonzero)
classical solution of (SSE) in R3 , then the helicity of V is equal to
zero, namely

∫
R3 V · Ωdx = 0, where Ω =curlV .
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Main Results:

• Given a smooth velocity field v(x, t), the particle trajectory map
a 7→ X(a, t) is defined by the solution of the ODE system,

∂X(a, t)
∂t

= v(X(a, t), t) ; X(a, 0) = a ∈ R3.

Theorem 2 There exists no finite time blowing up self-similar
solution (v, p) to the 3D Euler equations represented by (V, P )
above under the following assumptions:

(i) Before singular time T∗ the smooth solution v generates a
particle trajectory map a 7→ X(a, t), which is an C1(R3 : R3)
diffeomorphism.

(ii) The vorticity Ω =curl V is nonzero, and there exists p1 > 0
such that the Ω ∈ Lp(R3; R3) for all p ∈ (0, p1).
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Remarks

• The condition (i), which is equivalent to the existence of the
‘back-to-label map’, A(·, t) = X−1(·, t), is guaranteed by a decay
condition(regardless of its rate) for the velocity V (P. Constantin,
private communication).

• For example, if Ω ∈ L1
loc(R3; R3) and there exist constants R,K

and ε1, ε2 > 0 such that |Ω(x)| ≤ Ke−ε1|x|ε2 for |x| > R, then we
have Ω ∈ Lp(R3; R3) for all p ∈ (0, 1).
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• In the zero vorticity case Ω = 0, since div V = 0 and curl V = 0,
we have V = ∇h, where h(x) is a harmonic function. Hence, we
have an easy example of self-similar blow-up,

v(x, t) =
1

(T∗ − t)
α

α+1
∇h

(
x

(T∗ − t)
1

α+1

)
,

in R3, which is also the case of the 3D Navier-Stokes(α = 1). We
do not consider this case in the theorem.
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The previous theorem is a corollary of the following more general
theorem.

Theorem 3 Let v be a C([0, T );C1(R3)) solution to (E), which
satisfies the condition (i) of previous theorem. Suppose we have a
representation of the vorticity of the solution v to the 3D Euler
equations by

ω(x, t) = Ψ(t)Ω(Φ(t)x) ∀t ∈ [0, T )

where Ω = curlV for some V , and there exists p1 > 0 such that
Ω ∈ Lp(R3) for all p ∈ (0, p1). Then, necessarily either
det(Φ(t)) ≡ det(Φ(0)) on [0, T ), or Ω = 0.
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Proof of Theorem 2 from Theorem 3.

We apply Theorem 3 with

Φ(t) = (T∗ − t)−
1

α+1 I, and Ψ(t) = (T∗ − t)−1,

where I is the unit matrix in R3×3. If α 6= −1 and t 6= 0, then

det(Φ(t)) = (T∗ − t)−
3

α+1 6= T
− 3

α+1
∗ = det(Φ(0)).

Hence, we conclude that Ω = 0. �
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Proof of Theorem 3.

• By consistency with the initial condition,
ω0(x) = Ψ(0)Ω(Φ(0)x), and hence Ω(x) = Ψ(0)−1ω0([Φ(0)]−1x).

• Using this fact, we can rewrite the representation of self-similar
solution in the form,

ω(x, t) = G(t)ω0(F (t)x) ∀t ∈ [0, T ),

where G(t) = Ψ(t)/Ψ(0), F (t) = [Φ(0)]−1Φ(t).

• In order to prove the theorem it suffices to show that either
det(F (t)) = 1 for all t ∈ [0, T ), or ω0 = 0
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• We set A(x, t) := X−1(x, t), which is the back-to-label map.
Taking curl of the first equation of (E), we obtain the vorticity
evolution equation,

∂ω

∂t
+ (v · ∇)ω = (ω · ∇)v.

• This, taking dot product with ω, leads to

∂|ω|
∂t

+ (v · ∇)|ω| = α|ω|,
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where α(x, t) is defined as

α(x, t) =





3∑

i,j=1

Sij(x, t)ξi(x, t)ξj (x, t) if ω(x, t) 6= 0

0 if ω(x, t) = 0

with

Sij =
1
2

(
∂vj

∂xi
+

∂vi

∂xj

)
, and ξ(x, t) =

ω(x, t)
|ω(x, t)|

.
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• In terms of the particle trajectory mapping we can rewrite the
equation for |ω(x, t) as

∂

∂t
|ω(X(a, t), t)| = α(X(a, t), t)|ω(X(a, t), t)|.

• Integrating this along the particle trajectories {X(a, t)}, we have

|ω(X(a, t), t)| = |ω0(a)| exp
[∫ t

0

α(X(a, s), s)ds

]
.
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• Taking into account the simple estimates

−‖∇v(·, t)‖L∞ ≤ α(x, t) ≤ ‖∇v(·, t)‖L∞ ∀x ∈ R3,

we obtain that

|ω0(a)| exp
[
−
∫ t

0

‖∇v(·, s)‖L∞ds

]
≤ |ω(X(a, t), t)|

≤ |ω0(a)| exp
[∫ t

0

‖∇v(·, s)‖L∞ds

]
,

which, using the back to label map, can be rewritten as

|ω0(A(x, t))| exp
[
−
∫ t

0

‖∇v(·, s)‖L∞ds

]
≤ |ω(x, t)|

≤ |ω0(A(x, t))| exp
[∫ t

0

‖∇v(·, s)‖L∞ds

]
.
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• Combining this with the self-similar representation formula, we
have

|ω0(A(x, t))| exp
[
−
∫ t

0

‖∇v(·, s)‖L∞ds

]
≤ G(t)|ω0(F (t)x)|

≤ |ω0(A(x, t))| exp
[∫ t

0

‖∇v(·, s)‖L∞ds

]
.

• Given p ∈ (0, p1), computing Lp(R3) norm of the each side of (1),
we derive

‖ω0‖Lp exp
[
−
∫ t

0

‖∇v(·, s)‖L∞ds

]
≤ G(t)[det(F (t))]−

1
p ‖ω0‖Lp

≤ ‖ω0‖Lp exp
[∫ t

0

‖∇v(·, s)‖L∞ds

]
,

where we used the fact det(∇A(x, t)) ≡ 1.
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• Now, suppose Ω 6= 0, which is equivalent to assuming that
ω0 6= 0, then we divide the above inequalities by ‖ω0‖Lp to obtain

exp
[
−
∫ t

0

‖∇v(·, s)‖L∞ds

]
≤ G(t)[det(F (t))]−

1
p

≤ exp
[∫ t

0

‖∇v(·, s)‖L∞ds

]
.

• If there exists t1 ∈ (0, T ) such that det(F (t1)) 6= 1, then either
det(F (t1)) > 1 or det(F (t1)) < 1.

• In either case, setting t = t1 and passing p ↘ 0 in the above
inequalities, we deduce that

∫ t1

0

‖∇v(·, s)‖L∞ds = ∞.

• This contradicts with the assumption that the flow is smooth on
(0, T ), i.e v ∈ C([0, T );C1(R3; R3)). �
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Divergence-free transport equation

• The previous argument in the proof of main theorem can also be
applied to the following transport equations by a divergence-free
vector field in Rn, n ≥ 2.

(T )





∂θ

∂t
+ (v · ∇)θ = 0,

div v = 0,

θ(x, 0) = θ0(x),

where v = (v1, · · · , vn) = v(x, t), and θ = θ(x, t).
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• In view of the invariance of the transport equation under the
scaling transform,

v(x, t) 7→ vλ,α(x, t) = λαv(λx, λα+1t),

θ(x, t) 7→ θλ,α,β(x, t) = λβθ(λx, λα+1t)

for all α, β ∈ R and λ > 0, the self-similar blowing up solution is of
the form,

v(x, t) =
1

(T∗ − t)
α

α+1
V

(
x

(T∗ − t)
1

α+1

)
,

θ(x, t) =
1

(T∗ − t)β
Θ

(
x

(T∗ − t)
1

α+1

)

for α 6= −1 and t sufficiently close to T∗.
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• We have following theorem.

Theorem 4 Suppose there exist α 6= −1, β ∈ R and solution
(V,Θ) to the system (ST) with Θ ∈ Lp1(Rn) ∩ Lp2(Rn) for some
p1, p2 such that 0 < p1 < p2 ≤ ∞. Then, Θ = 0.

Corollary 1 There exist no self-similar blow-ups for the density
dependent Euler equations, the 2D (inviscid) Boussinesq system,
and the 2D quasi-geostrophic equations under the appropriate
integrability conditions.
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• Similarly to the case of the Euler equations the above theorem is
a corollary of the following one.

Theorem 5 Suppose there exists T > 0 such that there exists a
representation of the solution θ(x, t) to the system (T) by

θ(x, t) = Ψ(t)Θ(Φ(t)x) ∀t ∈ [0, T ).

Assume there exist p1 < p2 with p1, p2 ∈ (0,∞] such that
Θ ∈ Lp1(Rn) ∩ Lp2(Rn). Then, necessarily either
det(Φ(t)) ≡ det(Φ(0)) and Ψ(t) ≡ Ψ(0) on [0, T ), or Θ = 0.
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• Density-dependent Euler equations in Rn, n ≥ 2.




∂ρv

∂t
+ div (ρv ⊗ v) = −∇p,

∂ρ

∂t
+ (v · ∇)ρ = 0,

div v = 0,

v(x, 0) = v0(x), ρ(x, 0) = ρ0(x),

where v = (v1, · · · , vn) = v(x, t) is the velocity, ρ = ρ(x, t) ≥ 0 is
the scalar density of the fluid, and p = p(x, t) is the pressure.
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• The Boussinesq system in R2.




∂v

∂t
+ (v · ∇)v = −∇p + θe1,

∂θ

∂t
+ (v · ∇)θ = 0,

div v = 0,

v(x, 0) = v0(x), θ(x, 0) = θ0(x)

where v = (v1, v2) = v(x, t) is the velocity, e1 = (1, 0), and
p = p(x, t) is the pressure, while θ = θ(x, t) is the temperature
function.
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• The 2D quasi-geostrophic equation

(QG)





∂θ

∂t
+ (v · ∇)θ = 0,

v = −∇⊥(−∆)−
1
2 θ

(
= ∇⊥

∫

R2

θ(y, t)
|x − y|

dy

)
,

θ(x, 0) = θ0(x),

where ∇⊥ = (−∂2, ∂1).
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3. Nonexistence of ‘asymptotically’

self-similar singularity

• We now consider the possibility of ‘asymptotic’ evolution of the
local smooth solution toward a self-similar singularity as t → T (the
possible singular time).

Theorem 6 Let v ∈ C([0, T );B1
∞,1(R3)) be a classical solution to

the 3D Euler equations. Suppose there exist p1 > 0, α > −1,
V̄ ∈ C1(R3) such that Ω̄ =curl V̄ ∈ Lq(R3) for all q ∈ (0, p1), and

lim
t↗T

(T − t)

∥∥∥∥∥ω(·, t) −
1

T − t
Ω̄

(
·

(T − t)
1

α+1

)∥∥∥∥∥
Ḃ0

∞,1

= 0.

Then, Ω̄ = 0, and v ∈ C([0, T + δ);B1
∞,1(R3)) for some δ > 0.
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• The proof uses the following continuation principle for local
solution.

Proposition 1 Let v ∈ C([0, T );B1
∞,1(R3)) be a classical solution

to the 3D Euler equations. There exists an absolute constant η > 0
such that if

inf
0≤t<T

(T − t)‖ω(t)‖Ḃ0
∞,1

< η,

then, v ∈ C([0, T + δ);B1
∞,1(R3)) for some δ > 0.

• The proof of this proposition is a slight variation of local a priori
estimate in the Besov space.
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Outline of the Proof:

• We change from physical variables (x, t) ∈ R3 × [0, T ) into
‘self-similar variable’ (y, s) ∈ R3 × [0,∞) as follows:

y =
x

(T − t)
1

α+1
, s =

α

α + 1
log
(

T

T − t

)
.

• Based on this change of variables, we transform (v, p) 7→ (V, P )
according to

v(x, t) =
1

(T − t)
α

α+1
V (y, s), p(x, t) =

1

(T − t)
2α

α+1
P (y, s).
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• Substituting (v, p) into the Euler system we obtain the

(E1)





α

α + 1
Vs +

α

α + 1
V +

1
α + 1

(y · ∇)V + (V · ∇)V = −∇P,

div V = 0,

V (y, 0) = V0(y) = T
α

α+1 v0(T
1

α+1 y).

• In terms of V our convergence condition is translated into

lim
s→∞

‖Ω(·, s) − Ω̄(·)‖Ḃ0
∞,1

= 0,

where we set Ω = curl V .
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• From this we show easily that V̄ is a stationary solution of (E1).

• Using the previous nonexistence result we have Ω̄ = 0.

• Hence the convergence hypothesis of the theorem reduces to

lim
t↗T

(T − t) ‖ω(·, t)‖Ḃ0
∞,1

= 0.

• Applying our continuation principle, we can continue our local
solution beyond T . �

34



4. Nonexistence of asymptotically

self-similar solutions for the 3D

Navier-Stokes equations

Here we are concerned on the following 3D Navier-Stokes equations.

(NS)





∂v

∂t
+ (v · ∇)v = −∇p + ∆v, (x, t) ∈ R3 × (0,∞)

div v = 0, (x, t) ∈ R3 × (0,∞)

v(x, 0) = v0(x), x ∈ R3
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Theorem 7 Let p ∈ [3,∞), and v ∈ C([0, T );Lp(R3)) be a classical
solution to (NS). Suppose there exists V̄ ∈ Lp(R3) such that

lim
t↗T

(T − t)
p−3
2p

∥∥∥∥v(·, t) − 1√
T − t

V̄

(
·√

T − t

)∥∥∥∥
Lp

= 0.

Then, V̄ = 0, and v ∈ C([0, T + δ);Lp(R3)) for some δ > 0.

• Hou and Li obtained previously this result for p ∈ (3,∞) in ’06,
and the proof can be substantially simplified if we use the following
continuation principle.
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Proposition 2 Let p ∈ [3,∞), and v ∈ C([0, T );Lp(R3)) be a
classical solution to (NS). There exists a constant η > 0 depending
on p such that if

inf
0≤t<T

(T − t)
p−3
2p ‖v(t)‖Lp < η,

then, v ∈ C([0, T + δ);Lp(R3)) for some δ > 0.

• For p = 3 this reduces to the small data global regularity result in
L3(R3) due to Kato(’84)

• For p > 3 proof is immediate from Leray’s result(’34) on the
blow-up rate estimate,

‖v(t)‖Lp ≥ C

(T∗ − t)
p−3
2p

,

where T∗ is the assumed first blow-up time.
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Localization

• We denote B(z, r) = {x ∈ R3 | |x − z| < r} below.

Theorem 8 Let p ∈ [3,∞), and v ∈ C([0, T );Lp(R3)) be a
classical solution to (NS). Suppose either one of the followings hold.

(i) Let q ∈ [3,∞). Suppose there exists V̄ ∈ Lp(R3) and
R ∈ (0,∞) such that we have

lim
t↗T

(T − t)
q−3
2q sup

t<τ<T

∥∥∥∥v(·, τ ) − 1√
T − τ

V̄

(
· − z√
T − τ

)∥∥∥∥
Lq(B(z,R

√
T−t ))

= 0

(ii) Let q ∈ [2, 3). Suppose there exists V̄ ∈ Lp(R3) such that the
above holds for all R ∈ (0,∞).

Then, V̄ = 0, and (z, T ) is the regular point of v(x, t).
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• We note that, in contrast to Theorem 7, besides the localization
in space the range of q ∈ [2, 3) is also allowed for the possible
convergence of the local classical solution to the self-similar profile.

• For the proof we use the following regularity criterion for the
(NS) due to Gustafson-Kang-Tsai(’06):

Theorem 9 Let q ∈ (3/2,∞). Suppose v is a suitable weak
solution of (NS) in a cylinder, Q = B(z, r1) × (t − r2

1, T ) in the
sense of Caffarelli-Kohn-Nirenberg. Then, there exists a constant
η = η(q) > such that if

lim sup
r↘0

{
r

q−3
q ess sup

t−r2<τ<t

‖v(·, τ )‖Lq(B(z,r))

}
≤ η,

then (z, T ) is the regular point of v(x, t).
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