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Energy Dissipation at Zero Viscosity

Experiments

H. L. Dryden, Q. Appl. Maths 1, 7 (1943)

K. R. Sreenivasan, Phys. Fluids 27, 1048 (1984)

O. Cadot et al. Phys. Rev. E 56, 427 (1997)

R. B. Pearson et al. Phys. Fluids 14, 1288 (2002)

Simulations

K. R. Sreenivasan, Phys. Fluids 10, 528 (1998)

Y. Kaneda et al., Phys. Fluids 15, L21 (2003)

Energy dissipation rate in various turbulent

flows appears to remain positive as Reynolds

number tends to infinity.



Onsager’s Theorem

Theorem: Let the velocity

u ∈ L3([0, T ], Bα
p (Td)) ∩ C([0, T ], L2(Td))

be a weak (distributional) solution of the in-

compressible Euler equations with p ≥ 3 and

α > 1/3. Then energy is conserved.

The Hölder case (p = ∞) was stated by Lars

Onsager (1949). For an historical discussion,

see Eyink & Sreenivasan, RMP 78, 87 (2006).

The converse: to explain the observed en-

ergy dissipation requires α ≤ 1/3 in the infi-

nite Reynolds number limit. Onsager’s pre-

diction of such (near) singularities has been

confirmed by experiment and simulation:

J. F. Muzy et al. , Phys. Rev. Lett. 67, 3515 (1991)

A. Arneodo et al. , Physica A 213, 232 (1995)

P. Kestener and A. Arneodo, Phys. Rev. Lett. 93,

044501 (2004)



Smoothed Equations

The proof of Onsager’s theorem (following

Constantin et al. (1994)) uses the low-pass

filtering operation

u`(x) =
∫

ddr G`(r)u(x + r)

retaining the scales > `.

The filtered (mollified) equations are

∂tu` + ∇·[u`u` + τ `] = −∇p`

where τ ` is the stress tensor

τ ` = (u⊗ u)` − u` ⊗ u`,

from the eliminated subscale modes.

This is the same approach used in Large-Eddy

Simulation (LES) models of turbulent flow. In

that case, a closure equation is employed for

the stress tensor τ `.



Nonlinear Energy Cascade

Large-scale energy density (per mass):

e` =
1

2
|u`|2

Space transport of large-scale energy:

J` = (e` + p`)u` + u`·τ `

Energy flux to length-scales < `:

Π` = −∇u`:τ `

Large-scale energy balance:

∂te` + ∇·J` = −Π`

Turbulent energy cascade is the dynamical

transfer of kinetic energy from large-scales to

small-scales via Π`.



Proof of Onsager’s Theorem

The proof uses crucially that energy flux Π`

depends only upon velocity-increments

δu(x; r) ≡ u(x + r)− u(x).

In particular,

τ ` =
∫

dr G`(r)δu(r)⊗ δu(r)

−
∫

dr G`(r)δu(r)⊗
∫

dr G`(r)δu(r)

and

∇u` = −(1/`)
∫

dr (∇G)`(r)δu(r)

It is then easy to see, for example, that

Π`(x, t) = O(`3α−1)

if u(t) ∈ Cα(x).



Strong Scale-Locality Approximation

It is not hard to show that the energy cascade
is scale-local when 0 < α < 1. I.e. most of the
large-scale gradient ∇u` and stress τ ` come
from scales ∼ `. See Eyink (2005).

Assuming that energy cascade is strongly UV
local leads to the approximate formula

τSL ≈ u⊗ u− u⊗ u ≈ C`2(∇u)>(∇u).

where C = (1/d)
∫

dr |r|2G(r) for a spherically
symmetric filter kernel G (omitting ` subscripts).

Energy flux in the same approximation is

ΠSL = C`2
[
−Tr (S3) +

1

4
ω>Sω

]
(Borue & Orszag, 1998)

Energy cascade arises from vortex-stretching
and strain-skewness. Note that

−〈Tr (S3)〉 =
3

4
〈ω>Sω〉

where 〈·〉 is average over any homogeneous
ensemble (Betchov, 1956).



Vortex-Stretching Mechanism
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Energy-Cascade by Vortex-Stretching.

A small-scale vortex in a large-scale strain is elongated,

on average, along an expanding direction. As the vor-

tex lengthens it also becomes more slender and thus

spins up, by Kelvin’s Theorem. The spin-up motion

produces more stress in the contracting directions and

thus opposes the large-scale strain.



Taylor & Green (1937)
“To explain this process is, perhaps, the fundamental problem in
turbulent motion. It seems clear that it is intimately associated
with diffusion. Suppose that eddying motion of some definite
scale is generated in a non-viscous fluid. Consider two particles
A, B, situated on the same vortex line in a turbulent fluid of flow
and separated initially by small distance d0.

If the turbulence is diffusive, in the sense that a concentrated
collection of particles spreads into a diffuse cloud (and turbulence
is always found to be diffusive), the average distance d between
pairs of particles like A and B increases continually.

If the fluid were non-viscous the continual increase in the average
value of d2 would necessarily involve a continual increase in ω2, ω
being the resultant vorticity at any point. In fact, the equation
for conservation of circulation in a non-viscous fluid is

ω

d
=

ω0

d0
or

ω2

d2
=

ω2
0

d2
0

(10)

where ω0 is the initial resultant vorticity when d = d0. Hence ω2

increases continually as d2 increases.

The mean rate of dissipation of energy in a viscous fluid is

W = µ(ξ2 + η2 + ζ2) = µω2, (11)

so that if turbulence is set up in a slightly viscous fluid by the
formation of large-scale eddies (e.g. as in a wind-tunnel when
the wind meets a large-scale obstruction) we may expect first an

increase in ω2 in accordance with (10).

When ω2 has increased to some value which depends on the vis-

cosity, it is no longer possible to neglect the effect of viscosity

in the equation for the conservation of circulation, so that (10)

ceases to be true. Experiment shows, in fact, that in a wind

tunnel W reaches the definite value indicated by (5) and (6).”



Kelvin Circulation Theorem

For a closed, oriented, rectifiable loop C ⊂ Λ

at an initial time t0, the circulation

Γ(C, t) =
∮
C(t)

u(t)·dx =
∫
S(t)

ω(t)·dA

where C(t) is the loop at time t advected by

the fluid velocity u, S(t) is any surface span-

ning that loop, and ω(t) = ∇×u(t).

Kelvin-Helmholtz Theorem:

d

dt
Γ(C, t) = ν

∮
C(t)

4u(t)·dx.

The Kelvin theorem for all loops C is formally

equivalent to the Navier-Stokes equation.

Question:

Does the righthand side vanish as ν → 0?

(See recent work of P. Constantin).



Kelvin Theorem in the Inertial-Range

Large-scale circulation:

Γ`(C, t) =
∮
C`(t)

u`(t)·dx =
∫
S`(t)

ω`(t)·dS

where C`(t) and S`(t) are advected by u`,

which generates a flow of diffeomorphisms.

Circulation balance:

(d/dt)Γ`(C, t) =
∮
C`(t)

f`(t)· dx

where

f` = (u×ω)` − u`×ω` = −∇·τ ` + ∇k`

is the turbulent vortex-force and k` = (1/2)Tr τ `

is the subgrid kinetic energy.

Define loop-torque K`(C) ≡ −
∮
C f`·dx. Is the

limit

lim
`→0

K`(C) = 0?



Rigorous Bound

If velocity u ∈ Cα and L(C) is the length of C

|K`(C)| ≤ (const.)L(C)`2α−1

See G. Eyink, C. R. Physique, 7, 449 (2006).

Thus K`(C) → 0 if C is rectifiable and h > 1/2.

However, in turbulent flow at infinite Reynolds

number the most probable Hölder exponent is

h∗ ≈ 1/3 and material curves C(t) are fractal!

A cascade of circulations is possible. But

note that

〈K`(C)〉 = 0

for any homogeneous average, for all ` and C.

There is no mean cascade of circulations.



Circulation Cascade: Numerical Results

PDF & RMS of subscale torque are nearly independent

of kc = 2π/` in the turbulent inertial-range: the cascade

of circulations is persistent in scale.

Figure. (a) PDF and (b) RMS of the subscale loop-torque

K`(C) = −
∮

C
f`·dx, for square loops C of edge-length 64 in 10243

DNS of forced 3D hydrodynamic turbulence. (Chen et al., 2006)



Kraichnan Passive Scalar Model

Definition: For (x, t) ∈ Λ× [0,∞)

(∂t + u(x, t)◦∇)θ(x, t) = 0

interpreted in the Stratonovich sense. The advecting
velocity u(x, t) is a Gaussian (generalized) random field,
with mean u(x, t) and covariance

〈ũi(x, t)ũj(x′, t′)〉 = Dij(x,x′; t)δ(t− t′).

More precisely,

dθ(x, t) = −u(x, t)·∇θ(x, t)dt− Ũ(x, dt)◦∇θ(x, t)

and

Ũ(x, t) =
∞∑

n=0

√
λn(t)en(x, t)Wn(t),

where λn(t) and en(x, t) for n = 0,1,2, ... are the eigen-
values and eigenfunctions of the positive, trace-class
operator with kernel D(x,x′; t) acting on L2(Λ,Rd) and
Wn(t), n = 0,1,2, ... independent Brownian motions.

Hölder-continuity in space:

E
(
|u(x)− u(x′)|2

)
= C|x− x′|2α

with 0 < α < 1.



Dissipative Anomaly

For the Hölder velocity case, the scalar equation is
dissipative and the scalar “energy” is not conserved.

For t > t′, ∫
dx |θ(x, t)|2 <

∫
dx |θ(x, t′)|2

Spontaneous Stochasticity: Non-uniqueness of Lagrangian
trajectories for a fixed velocity realization!

time

space

X

Representation of solution by random characteristics:

θ(x, t) =

∫
Px,t(dx

′|u)θ(x′(t′), t′)



LeJan-Raimond Weak Solutions

Ito formulation (assume u = 0):

dθ(x, t) =
1

2
Dij(x,x; t)∇i∇jθ(x, t)dt−U(x, dt)·∇θ(x, t)

or

θ(x, t) = Pt,t′θ(x, t′)−
∫ t

t′
Pt,sU(x, ds)·∇θ(x, t) = Su

t,t′θ(x, t′)

where Pt,t′ is the Markov semigroup of the diffusion with
generator A(t) = 1

2
Dij(x,x; t)∇i∇j and Su

t,t′ is defined by
the Wiener chaos (or Krylov-Veretennikov) expansion:

Su
t,t′ =

∞∑
n=0

(−1)n

∫
t′≤s1≤s2≤···≤sn≤t

Pt,sn
U(dsn)·∇Psn,sn−1

· · ·U(ds2)·∇Ps2,s1U(ds1)·∇Ps1,t′.

LeJan & Raimond (2002, 2004) prove that this defines
a random Markov semigroup (conditioned upon u).

*The resulting weak solutions are robust: they are also
obtained by smoothing u → u` or adding a small scalar
diffusivity κ and taking limits ` → 0 or κ → 0.

*Analogous to the “generalized Euler flows” of Brenier
& Shnirelman, but for the Cauchy initial-value problem.



Passive Vector Model

Ideal Ohm’s Law for vector potential A

∂tA + ∇(u·A)− u×(∇×A) = 0

or induction equation for magnetic field B = ∇×A

∂tB + ∇×(u×B) = 0

Alfvén’s Theorem: Conservation of magnetic flux

Φ(C, t) =

∮
C(t)

A(t)·dx =

∫
S(t)

B(t)·dS.

More generally, a passive k-form satisfies

∂tω
k + Luω

k = 0

with Lu the Lie-derivative along the vector field u. This
is equivalent to conservation of the integral invariants

Ik(t) =

∫
Ck(t)

ωk(t)

for any k-dimensional volume Ck(t) comoving with u.
Then k = 0 is the passive scalar, k = 1 the passive
vector and k = 2 the passive magnetic field.

The Kazantsev model of kinematic dynamo uses a
white-in-time velocity field u(t) in these equations, in-
terpreted in Stratonovich sense.



Is Alfvén’s Theorem Valid for a Hölder Velocity?

Consider the Kraichnan ensemble of velocities u(t),
with 0 < α < 1. Then is

(d/dt)Φ(C, t) = 0 ?

A material loop C(t) may not even exist! Because of
stochastic splitting of Lagrangian particles in a non-
smooth velocity, an initial loop C may ”explode” at
any t > 0 into a cloud of disconnected particles:
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For smooth velocity (α = 1), the white-noise veloc-
ity generates a random flow of diffeomorphisms. See
Kunita (1990). Here Alfvén’s Theorem holds in the
standard sense, with the usual proof.



Generalized Stochastic Flow of Maps

Lagrangian flow maps ξt satisfy

(d/dt)ξt(a) = u(ξt(a) ,◦ t).

The conditional distribution of flow configurations ξ at
time t given the velocity realization u, or Pu[ξ, t], then
satisfies the stochastic Liouville equation:

(d/dt)Pu[ξ, t] = −
∫

da
δ

δξ(a)
· (u(ξ(a), t) ◦ Pu[ξ, t]) .

It is formally equivalent to the Ito equation:

(d/dt)Pu[ξ, t] =

1

2

∫
da

∫
da′

δ2

δξi(a)δξj(a′)

(
Dij(ξ(a), ξ(a′); t)Pu[ξ, t]

)
−

∫
da

δ

δξ(a)
· (ũ(ξ(a), t)Pu[ξ, t])

= (A∗(t)Pu)[ξ, t]−
∫

da
δ

δξ(a)
· (ũ(ξ(a), t)Pu[ξ, t]) .

Averaging over u gives the forward Kolmogorov equa-
tion ∂tP [ξ, t] = A∗(t)P [ξ, t] with

A∗(t) =
1

2

∫
da

∫
da′

δ2

δξi(a)δξj(a′)
Dij(ξ(a), ξ(a′); t).



Random Family of Diffusions in Hilbert Space

G(Λ) = group of volume-preserving diffeomorphisms
S(Λ) = semigroup of Borel volume-preserving maps

G(Λ) ⊂dense S(Λ) ⊂closed L2(Λ,Rd)

See Y. Brenier (2003).

Krylov-Veretennikov expansion:

Su
t,t′ = Pt,t′+

∞∑
n=1

∫ t

t′
dt1

∫
Λ

da1

∫ t1

t′
dt2

∫
Λ

da2 · · ·
∫ tn−1

t′
dtn

∫
Λ

dan

Pt,t1

(
ũ(ξ(a1), t1)·

δ

δξ(a1)

)
Pt1,t2

(
ũ(ξ(a2), t2)·

δ

δξ(a2)

)
Pt2,t3

· · ·Ptn−1,tn

(
ũ(ξ(an), tn)·

δ

δξ(an)

)
Ptn,t′,

Pt,t′ is the Markov semigroup of the diffusion on L2(Λ,Rd)
with generator

A(t) =
1

2

∫
Λ

da

∫
Λ

da′Dij(ξ(a), ξ(a′); t)
δ2

δξi(a)δξj(a′)

These formal arguments suggest a picture of random
splitting of Lagrangian flows in the Kraichnan model.



Loop Equation for Passive Vector

Eulerian equation for magnetic flux:

∂tΦ(C, t) +

∫ 2π

0
dθ ui(C(θ), t) ◦

δ

δCi(θ)
Φ(C, t) = 0

Cf. A. A. Migdal (1993).

Ito formulation:

∂tΦ(C, t) +

∫ 2π

0
dθ ui(C(θ), t)

δ

δCi(θ)
Φ(C, t)

=
1

2

∫ 2π

0
dθ

∫ 2π

0
dθ′ Dij(C(θ), C(θ′), t)

δ2

δCi(θ)δCj(θ′)
Φ(C, t)

The righthand side is a diffusion in free loop space on
the manifold Λ. See Driver & Röckner (1992). The
LeJan-Raimond approach can be applied again!

Finally, for t > t′ (?)

Φ(C, t) =

∫
PC,t(dC ′|u)Φ(C ′(t′), t′).

The magnetic flux is not conserved, except on average.



Conjecture for Circulations of Euler Solutions

Eyink (2006) conjectured the following martingale prop-
erty for circulations of generalized Euler solutions:

E[Γ(C, t′)|{Γ(C, s), s < t}] = Γ(C, t) for t′ > t

The average is over random Lagrangian paths, given
the past history of the circulation.

The average circulation in the future is given by the
last known value.

This martingale property can be formally derived from
generalized Least-Action Principle of Brenier-Shnirelman,
minP S[P ] with

S[P ] =
1

2

∫
P (dξ)

∫ tf

t0

dt

∫
Λ

da|ξ̇(a, t)|2.

But:

*What sets the arrow of time in Hamilton’s Principle?
Are circulations martingales backward in time?

*Is the statistical version of Kelvin Theorem (martin-
gale property) sufficient for G. I. Taylor’s argument?
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