Pressure estimate for Navier-Stokes equation in bounded domains

Jian-Guo Liu & Jie Liu (U Maryland College Park) Bob Pego (Carnegie Mellon)

- Stability and convergence of efficient Navier-Stokes solvers via a commutator estimate, to appear in Comm. Pure Appl. Math.
- Error estimates for finite element Navier-Stokes solvers with explicit time stepping for pressure (submitted)

Phenomena modeled by Navier-Stokes dynamics: Lift, drag, boundary-layer separation, vortex shedding, ...

Phenomena modeled by Navier-Stokes dynamics: Lift, drag, boundary-layer separation, vortex shedding, ...

Phenomena modeled by Navier-Stokes dynamics: Lift, drag, boundary-layer separation, vortex shedding, ...

Helmholtz projection onto divergence-free vector fields

$$L^{2}(\Omega, \mathbb{R}^{N}) = \mathcal{P}L^{2}(\Omega, \mathbb{R}^{N}) \oplus \nabla H^{1}(\Omega)$$

Given $\vec{v} \in L^2(\Omega, \mathbb{R}^N)$, there exists $q \in H^1(\Omega)$ so that

 $\vec{v} = \mathcal{P}\vec{v} - \nabla q$

satisfies $\langle \mathcal{P}\vec{v}, \nabla \phi \rangle = \langle \vec{v} + \nabla q, \nabla \phi \rangle = 0$ for all $\phi \in H^1(\Omega)$.

Helmholtz projection onto divergence-free vector fields

$$L^{2}(\Omega, \mathbb{R}^{N}) = \mathcal{P}L^{2}(\Omega, \mathbb{R}^{N}) \oplus \nabla H^{1}(\Omega)$$

Given $\vec{v} \in L^2(\Omega, \mathbb{R}^N)$, there exists $q \in H^1(\Omega)$ so that

 $\vec{v} = \mathcal{P}\vec{v} - \nabla q$

satisfies
$$\langle \mathcal{P}\vec{v}, \nabla \phi \rangle = \langle \vec{v} + \nabla q, \nabla \phi \rangle = 0$$
 for all $\phi \in H^1(\Omega)$.

Then

$$\nabla \cdot (\mathcal{P}\vec{v}) = 0 \quad \text{in } \Omega, \quad \vec{n} \cdot \mathcal{P}\vec{v} = 0 \quad \text{on } \Gamma.$$

Note $\mathcal{P}\vec{v} \in H(\operatorname{div};\Omega) = \{\vec{f} \in L^2(\Omega,\mathbb{R}^N): \nabla \cdot \vec{f} \in L^2\},\$

so $\vec{n} \cdot \mathcal{P}\vec{v} \in H^{-1/2}(\Gamma)$ by a standard trace theorem.

Traditional unconstrained formulation of NSE

$$\vec{u}_t + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} - \vec{f}) = \nu \mathcal{P} \Delta \vec{u}, \quad \vec{u}|_{\Gamma} = 0$$

- Formally $\partial_t (\nabla \cdot \vec{u}) = 0$
- Perform analysis and computation in spaces of divergence-free fields (unconstrained Stokes operator $\mathcal{P}\Delta u$ is incompletely dissipative).
- Inf-Sup/LBB condition(Ladyzhenskaya-Babuška-Brezzi)

$$\vec{u}_t + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} - \vec{f}) = \nu \mathcal{P} \Delta \vec{u} + \nu \nabla (\nabla \cdot \vec{u}), \quad \vec{u}|_{\Gamma} = 0$$

• Formally, $\partial_t (\nabla \cdot \vec{u}) = \nu \Delta (\nabla \cdot \vec{u}), \qquad \partial_n (\nabla \cdot \vec{u})|_{\Gamma} = 0$

$$\vec{u}_t + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} - \vec{f}) = \nu \mathcal{P} \Delta \vec{u} + \nu \nabla (\nabla \cdot \vec{u}), \quad \vec{u}|_{\Gamma} = 0$$

- Formally, $\partial_t (\nabla \cdot \vec{u}) = \nu \Delta (\nabla \cdot \vec{u}), \qquad \partial_n (\nabla \cdot \vec{u})|_{\Gamma} = 0$
- Equivalent to a 'reduced' formulation of Grubb & Solonnikov (1991)

$$\vec{u}_t + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} - \vec{f}) = \nu \mathcal{P} \Delta \vec{u} + \nu \nabla (\nabla \cdot \vec{u}), \quad \vec{u}|_{\Gamma} = 0$$

- Formally, $\partial_t (\nabla \cdot \vec{u}) = \nu \Delta (\nabla \cdot \vec{u}), \qquad \partial_n (\nabla \cdot \vec{u})|_{\Gamma} = 0$
- Equivalent to a 'reduced' formulation of Grubb & Solonnikov (1991)
- Lemma For all $\vec{u} \in L^2(\Omega, \mathbb{R}^N), \nabla(\nabla \cdot \vec{u}) = \Delta(I \mathcal{P})\vec{u}$

$$\vec{u}_t + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} - \vec{f}) = \nu \mathcal{P} \Delta \vec{u} + \nu \nabla (\nabla \cdot \vec{u}), \quad \vec{u}|_{\Gamma} = 0$$

- Formally, $\partial_t (\nabla \cdot \vec{u}) = \nu \Delta (\nabla \cdot \vec{u}), \qquad \partial_n (\nabla \cdot \vec{u})|_{\Gamma} = 0$
- Equivalent to a 'reduced' formulation of Grubb & Solonnikov (1991)

Lemma For all *u* ∈ L²(Ω, ℝ^N), ∇(∇ · *u*) = Δ(I−P)*u*NSE: *u*_t+P(*u* · ∇*u* − *f*) = νΔ*u*+ν(PΔ − ΔP)*u*, *u*|_Γ = 0

$$\vec{u}_t + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} - \vec{f}) = \nu \mathcal{P} \Delta \vec{u} + \nu \nabla (\nabla \cdot \vec{u}), \quad \vec{u}|_{\Gamma} = 0$$

- Formally, $\partial_t (\nabla \cdot \vec{u}) = \nu \Delta (\nabla \cdot \vec{u}), \qquad \partial_n (\nabla \cdot \vec{u})|_{\Gamma} = 0$
- Equivalent to a 'reduced' formulation of Grubb & Solonnikov (1991)
- Lemma For all $\vec{u} \in L^2(\Omega, \mathbb{R}^N), \nabla(\nabla \cdot \vec{u}) = \Delta(I \mathcal{P})\vec{u}$

• NSE:
$$\vec{u}_t + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} - \vec{f}) = \nu \Delta \vec{u} + \nu (\mathcal{P}\Delta - \Delta \mathcal{P})\vec{u}, \quad \vec{u}|_{\Gamma} = 0$$

• commutator/gradient: $[\Delta, \mathcal{P}]\vec{u} = (I - \mathcal{P})(\Delta \vec{u} - \nabla \nabla \cdot \vec{u}) := \nabla p_s$

$$\vec{u}_t + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} - \vec{f}) = \nu \mathcal{P} \Delta \vec{u} + \nu \nabla (\nabla \cdot \vec{u}), \quad \vec{u}|_{\Gamma} = 0$$

- Formally, $\partial_t (\nabla \cdot \vec{u}) = \nu \Delta (\nabla \cdot \vec{u}), \qquad \partial_n (\nabla \cdot \vec{u})|_{\Gamma} = 0$
- Equivalent to a 'reduced' formulation of Grubb & Solonnikov (1991)
- Lemma For all $\vec{u} \in L^2(\Omega, \mathbb{R}^N), \nabla(\nabla \cdot \vec{u}) = \Delta(I \mathcal{P})\vec{u}$
- NSE: $\vec{u}_t + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} \vec{f}) = \nu \Delta \vec{u} + \nu (\mathcal{P}\Delta \Delta \mathcal{P})\vec{u}, \quad \vec{u}|_{\Gamma} = 0$
- commutator/gradient: $[\Delta, \mathcal{P}]\vec{u} = (I \mathcal{P})(\Delta \vec{u} \nabla \nabla \cdot \vec{u}) := \nabla p_s$
- For $\vec{u} \in H^2 \cap H^1_0(\Omega, \mathbb{R}^N)$, Stokes pressure satisfies $\Delta p_s = 0$ in Ω with BC: $\partial_n p_s = \vec{n} \cdot (\Delta - \nabla \nabla \cdot) \vec{u} = -\vec{n} \cdot \nabla \times \nabla \times \vec{u}$ in $H^{-1/2}(\Gamma)$

first used by Orszag (1986) for consistency in a projection step.

Pressure Poisson equation

• Unconstrained reformulation of Navier-Stokes equations:

$$u_t + \vec{u} \cdot \nabla \vec{u} + \nabla p = \nu \Delta \vec{u} + \vec{f}, \quad \vec{u}|_{\Gamma} = 0$$

Total pressure p is determined by the weak form

$$\langle \nabla p, \nabla \phi \rangle = \langle \vec{f} - \vec{u} \cdot \nabla \vec{u}, \nabla \phi \rangle + \nu \langle \Delta - \nabla \nabla \cdot) \vec{u}, \nabla \phi \rangle \quad \forall \phi \in H^1(\Omega).$$

• In computation, we use $\Delta p^n = \nabla \cdot (\vec{f^n} - \vec{u^n} \cdot \nabla \vec{u^n})$ in Ω

with BC:
$$\vec{n} \cdot \nabla p^n = \vec{n} \cdot \vec{f^n} - \nu \vec{n} \cdot (\nabla \times \nabla \times \vec{u^n})$$
 on Γ

• ∇p_{s} arises from *tangential vorticity at the boundary*:

3D weak form:
$$\int_{\Omega} \nabla p_{s} \cdot \nabla \phi = \int_{\Gamma} (\nabla \times \vec{u}) \cdot (\vec{n} \times \nabla \phi) \quad \forall \phi \in H^{1}(\Omega)$$

Space of Stokes pressures

$$\begin{split} \mathcal{S}_p &= \{ p \in H^1(\Omega) / \mathbb{R} : \Delta p = 0 \quad \text{in } \Omega, \ \vec{n} \cdot \nabla p \in \mathcal{S}_{\Gamma} \}, \\ \mathcal{S}_{\Gamma} &= \{ f \in H^{-1/2}(\Gamma) : \int_G f = 0 \quad \forall \text{components } G \text{ of } \Gamma \}. \end{split}$$

- \exists a bounded right inverse $\nabla p_{\mathsf{s}} \mapsto \vec{u}$ from $\mathcal{S}_p \to H^2 \cap H^1_0(\Omega, \mathbb{R}^N)$
- In \mathbb{R}^3 , ∇S_p is the space of simultaneous gradients and curls:

$$\nabla \mathcal{S}_p = \nabla H^1(\Omega) \cap \nabla \times H^1(\Omega, \mathbb{R}^3)$$

If $\nabla \cdot \vec{u} = 0$, then $\|[\Delta, \mathcal{P}]\vec{u}\| = \|((I - \mathcal{P})\Delta \vec{u} - \nabla \nabla \cdot \vec{u}\| \le \|\Delta \vec{u}\|$. For period box $[\mathcal{P}, \Delta]\vec{u} = 0$

If $\nabla \cdot \vec{u} = 0$, then $\|[\Delta, \mathcal{P}]\vec{u}\| = \|((I - \mathcal{P})\Delta \vec{u} - \nabla \nabla \cdot \vec{u}\| \le \|\Delta \vec{u}\|$. For period box $[\mathcal{P}, \Delta]\vec{u} = 0$

Main Theorem Let $\Omega \subset \mathbb{R}^N$ $(N \ge 2)$, bounded, $\partial \Omega \in C^3$. Then, $\forall \varepsilon > 0$, $\exists C \ge 0$, s.t. for all $\vec{u} \in H^2 \cap H^1_0(\Omega, \mathbb{R}^N)$,

$$\int_{\Omega} |(\Delta \mathcal{P} - \mathcal{P}\Delta)\vec{u}|^2 \le (\frac{1}{2} + \varepsilon) \int_{\Omega} |\Delta \vec{u}|^2 + C \int_{\Omega} |\nabla \vec{u}|^2$$

If $\nabla \cdot \vec{u} = 0$, then $\|[\Delta, \mathcal{P}]\vec{u}\| = \|((I - \mathcal{P})\Delta \vec{u} - \nabla \nabla \cdot \vec{u}\| \le \|\Delta \vec{u}\|$. For period box $[\mathcal{P}, \Delta]\vec{u} = 0$

Main Theorem Let $\Omega \subset \mathbb{R}^N$ $(N \ge 2)$, bounded, $\partial \Omega \in C^3$. Then, $\forall \varepsilon > 0$, $\exists C \ge 0$, s.t. for all $\vec{u} \in H^2 \cap H^1_0(\Omega, \mathbb{R}^N)$,

$$\int_{\Omega} |(\Delta \mathcal{P} - \mathcal{P}\Delta)\vec{u}|^2 \le (\frac{1}{2} + \varepsilon) \int_{\Omega} |\Delta \vec{u}|^2 + C \int_{\Omega} |\nabla \vec{u}|^2$$

Hence our unconstrained NSE is fully dissipative:

$$\vec{u}_t + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} - \vec{f}) + \nu[\Delta, \mathcal{P}]\vec{u} = \nu \Delta \vec{u}, \quad \vec{u}|_{\Gamma} = 0$$

If $\nabla \cdot \vec{u} = 0$, then $\|[\Delta, \mathcal{P}]\vec{u}\| = \|((I - \mathcal{P})\Delta - \nabla \nabla \cdot)\vec{u}\| \le \|\Delta \vec{u}\|$. For period box $[\mathcal{P}, \Delta]\vec{u} = 0$.

Main Theorem Let $\Omega \subset \mathbb{R}^N$ $(N \ge 2)$, bounded, $\partial \Omega \in C^3$. Then, $\forall \varepsilon > 0, \exists C \ge 0$, s.t. for all $\vec{u} \in H^2 \cap H^1_0(\Omega, \mathbb{R}^N)$,

$$\int_{\Omega} |(\Delta \mathcal{P} - \mathcal{P}\Delta)\vec{u}|^2 \le (\frac{1}{2} + \varepsilon) \int_{\Omega} |\Delta \vec{u}|^2 + C \int_{\Omega} |\nabla \vec{u}|^2$$

Hence our unconstrained NSE is fully dissipative:

$$\vec{u}_t + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} - \vec{f}) + \nu [\Delta, \mathcal{P}]\vec{u} = \nu \Delta \vec{u}, \quad \vec{u}|_{\Gamma} = 0$$

NSE as perturbed heat equation!

Proof of the theorem – estimate on commutator $[\Delta, \mathcal{P}]$

Decompose $\vec{u} \in H^2 \cap H^1_0$ into parts parallel and normal to Γ :

Let $\Phi(x) = \operatorname{dist}(x, \Gamma), \ \vec{n}(x) = -\nabla \Phi(x), \ \xi \text{ a cutoff} = 1 \text{ near } \Gamma.$

$$ec{u} = ec{u}_{\parallel} + ec{u}_{\perp}, \qquad ec{u}_{\parallel} = \xi (I - ec{n} ec{n}^t) ec{u}.$$

Boundary identities on Γ : $\nabla \cdot \vec{u}_{\parallel} = 0$, $\vec{n} \cdot \nabla \times \nabla \times \vec{u}_{\perp} = 0$. Stokes pressure satisfies $\Delta p_{s} = 0$, $\partial_{n}p_{s} = -\vec{n} \cdot \nabla \times \nabla \times \vec{u}$ Hence $\nabla p_{s} = (\Delta \mathcal{P} - \mathcal{P}\Delta)\vec{u} = (I - \mathcal{P})(\Delta - \nabla \nabla \cdot)(\vec{u}_{\parallel} + 0)$. $\langle \nabla p_{s}, \nabla p_{s} \rangle = \langle \Delta \vec{u}_{\parallel} - \nabla \nabla \cdot \vec{u}_{\parallel}, \nabla p_{s} \rangle = \langle \Delta \vec{u}_{\parallel}, \nabla p_{s} \rangle$ $\langle \nabla p_{s} - \Delta \vec{u}_{\parallel}, \nabla p_{s} \rangle = 0$ $\|\Delta \vec{u}_{\parallel}\|^{2} = \|\nabla p_{s}\|^{2} + \|\nabla p_{s} - \Delta \vec{u}_{\parallel}\|^{2}$

D2N/N2D bounds on tubes $\Omega_s = \{x \in \Omega \mid \Phi(x) < s\}$

Lemma For $s_0 > 0$ small $\exists C_0$ such that whenever $\Delta p = 0$ in Ω_{s_0} and $0 < s < s_0$ then

$$\left| \int_{\Phi < s} |\vec{n} \cdot \nabla p|^2 - |(I - \vec{n}\vec{n}^t)\nabla p|^2 \right| \le C_0 s \int_{\Phi < s_0} |\nabla p|^2$$

In the limit $s \rightarrow 0$, it reduce to

$$\left| \int_{\Gamma} |\vec{n} \cdot \nabla p|^2 - \int_{\Gamma} |(I - \vec{n}\vec{n}^t)\nabla p|^2 \right| \le C_0 \int_{\Omega} |\nabla p|^2$$

In a half space: $\|\vec{n} \cdot \nabla p\|^2 = \|(I - \vec{n}\vec{n}^t)\nabla p\|^2$.

Known as Rellich identity in 2D circular disk.

Why factor $\frac{1}{2}$?

Orthogonality:
$$\langle \begin{pmatrix} a_{\parallel} \\ 0 \end{pmatrix} - \begin{pmatrix} b_{\parallel} \\ b_{\perp} \end{pmatrix}, \begin{pmatrix} b_{\parallel} \\ b_{\perp} \end{pmatrix} \rangle = 0$$

Equal partition: $b_{\perp} = b_{\parallel}$

implies $a_{\parallel} - b_{\parallel} = b_{\parallel}$.

Hence

$$|b|^2 = (b_{\parallel})^2 + (b_{\perp})^2 = 2(b_{\parallel})^2 = \frac{1}{2}(a_{\parallel})^2$$

Half space: $u(x,y) = \sin(kx)ye^{-ky}, \quad v(x,y) = 0, \quad p(x,y) = \cos(kx)e^{-ky}$ Equal partition: $||p_x||^2 = ||p_y||^2 = \frac{\pi k}{2}$ Orthogonality: $\Delta u = -2k\sin(kx)e^{-ky} = 2\partial_x p$

Some details

$$\begin{aligned} \|\Delta \vec{u}\|^2 &= \|\Delta \vec{u}_{\parallel}\|^2 + 2\langle \Delta \vec{u}_{\parallel}, \Delta \vec{u}_{\perp} \rangle + \|\Delta \vec{u}_{\perp}\|^2 \\ &\geq (1-\varepsilon) \|\Delta \vec{u}_{\parallel}\|^2 - C \|\nabla \vec{u}\|^2 \end{aligned}$$

From orthogonality identity $\langle \nabla p - \Delta \vec{u}_{\parallel}, \nabla p \rangle = 0$

 $\|\Delta \vec{u}_{\|}\|^{2} = \|\nabla p\|^{2} + \|\nabla p - \Delta \vec{u}_{\|}\|^{2}$

Some details

$$\begin{aligned} \|\Delta \vec{u}\|^2 &= \|\Delta \vec{u}_{\parallel}\|^2 + 2\langle \Delta \vec{u}_{\parallel}, \Delta \vec{u}_{\perp} \rangle + \|\Delta \vec{u}_{\perp}\|^2 \\ &\geq (1-\varepsilon) \|\Delta \vec{u}_{\parallel}\|^2 - C \|\nabla \vec{u}\|^2 \end{aligned}$$

From orthogonality identity $\langle \nabla p - \Delta \vec{u}_{\parallel}, \nabla p \rangle = 0$

$$\begin{aligned} \|\Delta \vec{u}_{\parallel}\|^{2} &= \|\nabla p\|^{2} + \|\nabla p - \Delta \vec{u}_{\parallel}\|^{2} \\ &= \|\nabla p\|^{2} + \|\nabla p\|^{2}_{\Phi > s} + \|\nabla p - \Delta \vec{u}_{\parallel}\|^{2}_{\Phi < s} \end{aligned}$$

$$\begin{aligned} \|\nabla p - \Delta \vec{u}_{\parallel}\|_{\Phi < s}^{2} &= \|(\nabla p - \Delta \vec{u}_{\parallel})_{\perp}\|_{\Phi < s}^{2} + \|(\nabla p - \Delta \vec{u}_{\parallel})_{\parallel}\|_{\Phi < s}^{2} \\ &\geq (1 - \varepsilon)\|\nabla p_{\perp}\|_{\Phi < s}^{2} + \|(\nabla p - \Delta \vec{u}_{\parallel})_{\parallel}\|_{\Phi < s}^{2} - \mathsf{junk} \end{aligned}$$

By orthogonality
$$\langle \nabla p - \Delta \vec{u}_{\parallel}, \nabla p \rangle = 0$$
, with $\langle f, g \rangle_s := \int_{\Phi < s} f \cdot g$,

$$0 = \langle (\nabla p - \Delta \vec{u}_{\parallel})_{\parallel}, \nabla p_{\parallel} \rangle_s + \langle (\nabla p - \Delta \vec{u}_{\parallel})_{\perp}, \nabla p_{\perp} \rangle_s + \int_{\Phi > s} |\nabla p|^2$$

Hence

$$\begin{aligned} \| (\nabla p - \Delta \vec{u}_{\parallel})_{\parallel} \|_{s}^{2} + \| \nabla p_{\parallel} \|_{s}^{2} &\geq -2 \langle (\nabla p - \Delta \vec{u}_{\parallel})_{\parallel}, \nabla p_{\parallel} \rangle_{s} \\ &\geq 2 \langle (\nabla p - \Delta \vec{u}_{\parallel})_{\perp}, \nabla p_{\perp} \rangle_{s} \end{aligned}$$

 $\|(\nabla p - \Delta \vec{u}_{\parallel})_{\parallel}\|_{s}^{2} \ge \|\nabla p_{\parallel}\|_{s}^{2} + 2(\|\nabla p_{\perp}\|_{s}^{2} - \|\nabla p_{\parallel}\|_{s}^{2}) - \mathsf{junk}$

Done! $(1+\varepsilon) \|\vec{u}\|^2 \ge \|\nabla p\|^2 + \|\nabla p\|^2_{\Phi>s} + \|\nabla p\|^2_{\Phi<s} - \mathsf{junk}$

Consequences of the main theorem

- Proof of unconditional stability and convergence for C¹ finiteelement methods without regard to inf-sup compatibility conditions for velocity and pressure
- Numerical demonstration of stability and accuracy for efficient and easy-to-implement C^0 finite-element schemes regardless of velocity/pressure compatibility
- Additional benefit: Simple proof of existence and uniqueness for strong solutions in bounded domains

Time-differencing scheme with pressure explicit (related: Ti96,Pe01,GS03,JL04) $\frac{\vec{u}^{n+1} - \vec{u}^n}{\Delta t} - \nu \Delta \vec{u}^{n+1} = \vec{f}^n - \vec{u}^n \cdot \nabla \vec{u}^n - \nabla p^n, \quad \vec{u}^{n+1}|_{\Gamma} = 0$ $\langle \nabla p^n, \nabla \phi \rangle = \langle \vec{f}^n - \vec{u}^n \cdot \nabla \vec{u}^n, \nabla \phi \rangle + \nu \langle \Delta \vec{u}^n - \nabla \nabla \cdot \vec{u}^n, \nabla \phi \rangle \quad \forall \phi \in H^1(\Omega)$

$$\begin{array}{l} \text{Time-differencing scheme with pressure explicit}}\\ (\text{related: Ti96,Pe01,GS03,JL04})\\ \hline \vec{u}^{n+1} - \vec{u}^n\\ \hline \Delta t & -\nu\Delta \vec{u}^{n+1} = \vec{f}^n - \vec{u}^n \cdot \nabla \vec{u}^n - \nabla p^n, \quad \vec{u}^{n+1}|_{\Gamma} = 0\\ \langle \nabla p^n, \nabla \phi \rangle = \langle \vec{f}^n - \vec{u}^n \cdot \nabla \vec{u}^n, \nabla \phi \rangle + \nu \langle \Delta \vec{u}^n - \nabla \nabla \cdot \vec{u}^n, \nabla \phi \rangle \quad \forall \phi \in H^1(\Omega)\\ \text{Since } \langle \nabla p^n, \mathcal{P} \Delta \vec{u}^n \rangle = 0, \text{ with } \nabla p_{\mathsf{S}}^n = (I - \mathcal{P}) \Delta \vec{u}^n - \nabla \nabla \cdot \vec{u}^n, \\ \langle \nabla p^n, \nabla \phi \rangle = \langle \vec{f}^n - \vec{u}^n \cdot \nabla \vec{u}^n, \nabla \phi \rangle + \nu \langle \nabla p_{\mathsf{S}}^n, \nabla \phi \rangle \quad \forall \phi \in H^1(\Omega). \end{array}$$

Taking $\phi = p^n$ gives the pressure estimate

$$\|\nabla p^n\| \le \|\vec{f}^n - \vec{u}^n \cdot \nabla \vec{u}^n\| + \nu \|\nabla p^n_{\mathsf{s}}\|$$

Stability analysis: dot with $-\Delta \vec{u}^{n+1}$

$$\frac{\vec{u}^{n+1} - \vec{u}^n}{\Delta t} - \nu \Delta \vec{u}^{n+1} = \vec{f}^n - \vec{u}^n \cdot \nabla \vec{u}^n - \nabla p^n$$

$$\frac{\|\nabla \vec{u}^{n+1} - \nabla \vec{u}^n\|^2 + \|\nabla \vec{u}^{n+1}\|^2 - \|\nabla \vec{u}^n\|^2}{2\Delta t} + \nu \|\Delta \vec{u}^{n+1}\|^2 \\
\leq \|\Delta \vec{u}^{n+1}\|(2\|\vec{f}^n - \vec{u}^n \cdot \nabla \vec{u}^n\| + \nu \|\nabla p_{\mathsf{s}}^n\|) \\
\leq (\frac{\varepsilon_1}{2} + \frac{\nu}{2})\|\Delta \vec{u}^{n+1}\|^2 + \frac{2}{\varepsilon_1}\|\vec{f}^n - \vec{u}^n \cdot \nabla \vec{u}^n\|^2 + \frac{\nu}{2}\|\nabla p_{\mathsf{s}}\|^2$$

This gives $\frac{\|\nabla \vec{u}^{n+1}\|^2 - \|\nabla \vec{u}^n\|^2}{\Delta t} + (\nu - \varepsilon_1) \|\Delta \vec{u}^{n+1}\|^2 \\
\leq \frac{8}{\varepsilon_1} (\|\vec{f}^n\|^2 + \|\vec{u}^n \cdot \nabla \vec{u}^n\|^2) + \nu \|\nabla p_s^n\|^2$

Handling the pressure

$$\frac{\|\nabla \vec{u}^{n+1}\|^2 - \|\nabla \vec{u}^n\|^2}{\Delta t} + (\nu - \varepsilon_1) \|\Delta \vec{u}^{n+1}\|^2$$
$$\leq \frac{8}{\varepsilon_1} (\|\vec{f}^n\|^2 + \|\vec{u}^n \cdot \nabla \vec{u}^n\|^2) + \nu \|\nabla p_{\mathsf{s}}^n\|^2$$

Use the theorem $(\beta = \frac{1}{2} + \varepsilon)$: $\nu \|\nabla p_s^n\|^2 \le \nu \beta \|\Delta \vec{u}^n\|^2 + \nu C \|\nabla \vec{u}^n\|^2$

$$\frac{\|\nabla \vec{u}^{n+1}\|^2 - \|\nabla \vec{u}^n\|^2}{\Delta t} + (\nu - \varepsilon_1)(\|\Delta \vec{u}^{n+1}\|^2 - \|\Delta \vec{u}^n\|^2) + (\nu - \varepsilon_1 - \nu\beta)\|\Delta \vec{u}^n\|^2 \leq \frac{8}{\varepsilon_1}(\|\vec{f}^n\|^2 + \|\vec{u}^n \cdot \nabla \vec{u}^n\|^2) + \nu C\|\nabla \vec{u}^n\|^2$$

That's it for the pressure!

Handling the nonlinear term

Use Ladyzhenskaya's inequalities

$$\begin{split} &\int_{\mathbb{R}^N} g^4 &\leq 2 \left(\int_{\mathbb{R}^N} g^2 \right) \left(\int_{\mathbb{R}^N} |\nabla g|^2 \right) & (N=2), \\ &\int_{\mathbb{R}^N} g^4 &\leq 4 \left(\int_{\mathbb{R}^N} g^2 \right)^{1/2} \left(\int_{\mathbb{R}^N} |\nabla g|^2 \right)^{3/2} & (N=3), \end{split}$$

to get for N = 2, 3 (details suppressed)

$$\int |\vec{u}^n \cdot \nabla \vec{u}^n|^2 \le C \|\nabla \vec{u}^n\|_{L^2}^3 \|\nabla \vec{u}^n\|_{H^1} \le \varepsilon_2 \|\Delta \vec{u}^n\|^2 + \frac{4C}{\varepsilon_2} \|\nabla \vec{u}^n\|^6$$

Take ε_1 , ε_2 small so $\varepsilon := \nu(1-\beta) - \varepsilon_1 - 8\varepsilon_2/\varepsilon_1 > 0$. Gronwall:

Unconditional stability theorem for N = 2, 3

Theorem Take $\vec{f} \in L^2(0, T; L^2(\Omega, \mathbb{R}^N))$, $\vec{u}^0 \in H^2 \cap H^1_0(\Omega, \mathbb{R}^N)$. Then \exists positive constants T^* and C^* depending only upon Ω , ν and

$$M_0 := \|\nabla \vec{u}^0\|^2 + \nu \Delta t \|\Delta \vec{u}^0\|^2 + \int_0^T \|\vec{f}\|^2,$$

so that whenever $n\Delta t \leq T^*$ we have

$$\sup_{0 \le k \le n} \|\nabla \vec{u}^k\|^2 + \sum_{k=0}^n \|\Delta \vec{u}^k\|^2 \Delta t \le C^*,$$
$$\sum_{k=0}^{n-1} \left(\left\| \frac{\vec{u}^{k+1} - \vec{u}^k}{\Delta t} \right\|^2 + \|\vec{u}^k \cdot \nabla \vec{u}^k\|^2 \right) \Delta t \le C^*.$$

Unconditional stability theorem for N = 2, 3

Theorem Take $\vec{f} \in L^2(0, T; L^2(\Omega, \mathbb{R}^N))$, $\vec{u}^0 \in H^2 \cap H^1_0(\Omega, \mathbb{R}^N)$. Then \exists positive constants T^* and C^* depending only upon Ω , ν and

$$M_0 := \|\nabla \vec{u}^0\|^2 + \nu \Delta t \|\Delta \vec{u}^0\|^2 + \int_0^T \|\vec{f}\|^2,$$

so that whenever $n\Delta t \leq T^*$ we have

$$\sup_{0 \le k \le n} \|\nabla \vec{u}^k\|^2 + \sum_{k=0}^n \|\Delta \vec{u}^k\|^2 \Delta t \le C^*,$$
$$\sum_{k=0}^{n-1} \left(\left\| \frac{\vec{u}^{k+1} - \vec{u}^k}{\Delta t} \right\|^2 + \|\vec{u}^k \cdot \nabla \vec{u}^k\|^2 \right) \Delta t \le C^*.$$

 $\vec{u}_{in} \in H_0^1 \Rightarrow \exists \text{ strong solution } \vec{u} \in L^2(0, T^*; H^2) \cap H^1(0, T^*; L^2)$

Estimate on the divergence

Let $w^n = \nabla \cdot \vec{u}^n$. Then as long as $n\Delta t \leq T_*$,

$$\sup_{0 \le k \le n} \|w^k\|_{H^1(\Omega)'}^2 + \sum_{k=1}^n \|w^k\|^2 \Delta t \le C(\|w^0\|_{H^1(\Omega)'}^2 + \Delta t^{1/2})$$

C^0 finite element scheme (Johnston-L 04)

Finite element spaces: $X_h \subset H_0^1(\Omega, \mathbb{R}^N)$, $Y_h \subset H^1(\Omega)/\mathbb{R}$. For all $\vec{v}_h \in X_h$ and $q_h \in Y_h$, require

 $\frac{1}{\Delta t} \left(\langle \vec{u}_h^{n+1}, \vec{v}_h \rangle - \langle \vec{u}_h^n, \vec{v}_h \rangle \right) + \nu \langle \nabla \vec{u}_h^{n+1}, \nabla \vec{v}_h \rangle \\ = - \langle \nabla p_h^n, \vec{v}_h \rangle + \langle \vec{f}^n - \vec{u}_h^n \cdot \nabla \vec{u}_h^n, \vec{v}_h \rangle.$

$$\langle \nabla p_h^n, \nabla q_h \rangle = \langle \vec{f}^n - \vec{u}_h^n \cdot \nabla \vec{u}_h^n, \nabla q_h \rangle + \nu \langle \nabla \times \vec{u}_h^n, \vec{n} \times \nabla q_h \rangle_{\Gamma},$$

Additional divergence damping can be achieved by adding $-\lambda \langle \nabla \cdot \vec{u}_h^n, \phi_h \rangle$ to the pressure equation.

C^1 finite element scheme

Finite element spaces: $X_h \subset H^2 \cap H^1_0(\Omega, \mathbb{R}^N)$, $Y_h \subset H^1(\Omega)/\mathbb{R}$. For all $\vec{v}_h \in X_h$ and $q_h \in Y_h$, require

$$\frac{1}{\Delta t} \left(\langle \nabla \vec{u}_h^{n+1}, \nabla \vec{v}_h \rangle - \langle \nabla \vec{u}_h^n, \nabla \vec{v}_h \rangle \right) + \nu \langle \Delta \vec{u}_h^{n+1}, \Delta \vec{v}_h \rangle = \langle \nabla p_h^n, \Delta \vec{v}_h \rangle - \langle \vec{f}^n - \vec{u}_h^n \cdot \nabla \vec{u}_h^n, \Delta \vec{v}_h \rangle.$$

$$\langle \nabla p_h^n, \nabla q_h \rangle = \langle \vec{f}^n - \vec{u}_h^n \cdot \nabla \vec{u}_h^n, \nabla q_h \rangle + \nu \langle \nabla \times \vec{u}_h^n, \vec{n} \times \nabla q_h \rangle_{\Gamma},$$

Error estimates of C^1 FE scheme

Theorem Assume Ω is a bounded domain in \mathbb{R}^N (N=2,3) with C^3 boundary. Let $M_0, > 0$, and let $T_* > 0$ be given by the stability theorem. Let $m \ge 2$, $m' \ge 1$ be integers, and assume

(i) The spaces $X_{0,h} \subset H^2 \cap H^1_0(\Omega, \mathbb{R}^N)$ and $Y_h \subset H^1(\Omega)$ have the property that whenever 0 < h < 1, $\vec{v} \in H^{m+1} \cap H^1_0(\Omega, \mathbb{R}^N)$ and $q \in H^{m'}(\Omega)$,

$$\inf_{\vec{v}_h \in X_{0,h}} \|\Delta(\vec{v} - \vec{v}_h)\| \leq C_0 h^{k-1} \|\vec{v}\|_{H^{k+1}} \text{ for } 2 \leq k \leq m,$$
$$\inf_{q_h \in Y_h} \|\nabla(q - q_h)\| \leq C_0 h^{m'-1} \|q\|_{H^{m'}},$$

where $C_0 > 0$ is independent of \vec{v} , q and h. (ii) $\vec{f} \in C^1([0,T], L^2(\Omega, \mathbb{R}^N))$, T > 0, and a given solution of NSE satisfies

 $(\vec{u}, p) \in C^1([0, T]; H^{m+1} \cap H^1_0(\Omega, \mathbb{R}^N)) \times C^1([0, T]; H^{m'}(\Omega)/\mathbb{R}).$

Then there exists $C_1 > 0$ with the following property. Whenever $\vec{u}_h^0 \in X_h$, 0 < h < 1, $0 < n\Delta t \le \min(T, T_*)$, and

$$\|\nabla \vec{u}_h^0\|^2 + \Delta t \|\Delta \vec{u}_h^0\|^2 + \sum_{k=0}^n \|\vec{f}(t_k)\|^2 \Delta t \le M_0,$$

then $\vec{e}^n = \vec{u}(t_n) - \vec{u}_h^n$, $r^n = p(t_n) - p_h^n$ of C^1 finite element scheme satisfy

$$\sup_{0 \le k \le n} \|\nabla \vec{e}^k\|^2 + \sum_{k=0}^n \left(\|\Delta \vec{e}^k\|^2 + \|\nabla r^k\|^2 \right) \Delta t$$
$$\le C_1 (\Delta t^2 + h^{2m-2} + h^{2m'-2} + \|\nabla \vec{e}^0\|^2 + \|\Delta \vec{e}^0\|^2 \Delta t).$$

Stability check for smooth solution

$$\Omega = [-1, 1]^2$$
, Re=0.5, $t = 1000$

P1/P1 finite elements, $\Delta x = \frac{1}{16}$, max $\Delta t = 8$

Spatial accuracy check for smooth solution

$$\Omega = [-1, 1]^2$$
, $\nu = .001$, $t = 2$,

P4/P4 finite elements, RK4 time stepping, $\Delta t = .003$,

Driven cavity flow

Re=2000. $2 \times 32 \times 32$ P4 elements. $\lambda = 15$.

CN/AB time stepping

Backward facing step flow

Re=100. 528 P4 elements. $\lambda = 20$. CN/AB time stepping

Re=600. 984 P4 elements. $\lambda = 20$. CN/AB time stepping

Non-homogeneous side conditions

$$\begin{array}{ll} \partial_t \vec{u} + \vec{u} \cdot \nabla \vec{u} + \nabla p = \nu \Delta \vec{u} + \vec{f} & (t > 0, x \in \Omega), \\ \nabla \cdot \vec{u} = h & (t \ge 0, x \in \Omega), \\ \vec{u} = \vec{g} & (t \ge 0, x \in \Gamma), \\ \vec{u} = \vec{u}_{\mathrm{in}} & (t = 0, x \in \Omega). \end{array}$$

Non-homogeneous side conditions

$$\begin{array}{ll} \partial_t \vec{u} + \vec{u} \cdot \nabla \vec{u} + \nabla p = \nu \Delta \vec{u} + \vec{f} & (t > 0, x \in \Omega), \\ \nabla \cdot \vec{u} = h & (t \ge 0, x \in \Omega), \\ \vec{u} = \vec{g} & (t \ge 0, x \in \Gamma), \\ \vec{u} = \vec{u}_{\mathrm{in}} & (t = 0, x \in \Omega). \end{array}$$

Unconstrained formulation involves an inhomogeneous pressure p_{qh} :

$$\partial_t \vec{u} + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} - \vec{f} - \nu \Delta \vec{u}) + \nabla p_{gh} = \nu \nabla \nabla \cdot \vec{u}$$

 $\langle \nabla p_{gh}, \nabla \phi \rangle = -\langle \vec{n} \cdot \partial_t \vec{g}, \phi \rangle_{\Gamma} + \langle \partial_t h, \phi \rangle + \langle \nu \nabla h, \nabla \phi \rangle \quad \forall \phi \in H^1(\Omega).$ $\nabla \cdot \vec{u} - h$ satisfies a heat equation with Neumann BCs as before.

$$\vec{u}_t + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} - \vec{f}) = \nu \mathcal{P} \Delta \vec{u}$$

$$\vec{u}_t + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} - \vec{f}) = \nu \mathcal{P} \Delta \vec{u} + \nu \nabla (\nabla \cdot \vec{u})$$

$$\vec{u}_t + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} - \vec{f}) = \nu \mathcal{P} \Delta \vec{u} + \nu \nabla (\nabla \cdot \vec{u})$$
$$= \nu \mathcal{P} \Delta \vec{u} + \nu \Delta (I - P) \vec{u}$$

$$\vec{u}_t + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} - \vec{f}) = \nu \mathcal{P} \Delta \vec{u} + \nu \nabla (\nabla \cdot \vec{u})$$
$$= \nu \mathcal{P} \Delta \vec{u} + \nu \Delta (I - P) \vec{u}$$
$$= \nu \Delta \vec{u} - \nu [\Delta, \mathcal{P}] \vec{u}$$

$$\vec{u}_t + \mathcal{P}(\vec{u} \cdot \nabla \vec{u} - \vec{f}) = \nu \mathcal{P} \Delta \vec{u} + \nu \nabla (\nabla \cdot \vec{u})$$
$$= \nu \mathcal{P} \Delta \vec{u} + \nu \Delta (I - P) \vec{u}$$
$$= \nu \Delta \vec{u} - \nu [\Delta, \mathcal{P}] \vec{u}$$
$$= \nu \Delta \vec{u} - \nu \nabla p_{\mathsf{s}}$$

- $\nabla \cdot \vec{u}$ satisfies a heat equation with Neumann BCs
- The Stokes pressure term is strictly controlled by viscosity
- Stability, existence, uniqueness theory is greatly simplified
- Promise of enhanced flexibility in design of numerical schemes

$$\vec{u}_t + \mathcal{P}(\vec{u} \rightarrow \nabla \vec{u} - \vec{f}) = \nu \mathcal{P} \Delta \vec{u} + \nu \nabla (\nabla \cdot \vec{u})$$
$$= \nu \mathcal{P} \Delta \vec{u} + \nu \Delta (I - P) \vec{u})$$
$$= \nu \Delta \vec{u} - \nu [\Delta, \mathcal{P}] \vec{u}$$
$$= \nu \Delta \vec{u} - \nu \nabla \vec{\mu}_s$$

- $\nabla \cdot \vec{u}$ satisfies a heat equation with Neumann BCs
- The Stokes pressure term is strictly controlled by viscosity
- Stability, existence, uniqueness theory is greatly simplified
- Promise of enhanced flexibility in design of numerical schemes

References

- G. Grubb and V. A. Solonnikov, Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudodifferential methods, *Math. Scand.* 69 (1991) 217–290.
- J. L. Guermond and J. Shen, A new class of truly consistent splitting schemes for incompressible flows, *J. Comp. Phys.* 192 (2003) 262–276.
- H. Johnston and J.-G. Liu, Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term, J. Comput. Phys. 199 (1) (2004) 221–259
- N. A. Petersson, Stability of pressure boundary conditions for Stokes and Navier-Stokes equations, J. Comp. Phys. 172 (2001) 40-70.
- L. J. P. Timmermans, P. D. Minev, F. N. Van De Vosse, An approximate projection scheme for incompressible flow using spectral elements, Int. J. Numer. Methods Fluids 22 (1996) 673–688.

Existence and uniqueness theorem

Assume

$$\vec{u}_{in} \in H_{uin} := H^{1}(\Omega, \mathbb{R}^{N}),$$

$$\vec{f} \in H_{f} := L^{2}(0, T; L^{2}(\Omega, \mathbb{R}^{N})),$$

$$\vec{g} \in H_{g} := H^{3/4}(0, T; L^{2}(\Gamma, \mathbb{R}^{N})) \cap L^{2}(0, T; H^{3/2}(\Gamma, \mathbb{R}^{N}))$$

$$\cap \{\vec{g} \mid \partial_{t}(\vec{n} \cdot \vec{g}) \in L^{2}(0, T; H^{-1/2}(\Gamma))\},$$

$$h \in H_{h} := L^{2}(0, T; H^{1}(\Omega)) \cap H^{1}(0, T; (H^{1})'(\Omega)).$$

and the compatibility conditions

$$\vec{g} = \vec{u}_{in} \quad (t = 0, x \in \Gamma), \qquad \langle \vec{n} \cdot \partial_t \vec{g}, 1 \rangle_{\Gamma} = \langle \partial_t h, 1 \rangle_{\Omega}.$$

Then $\exists T^* > 0$ so that a unique strong solution exists, with

$$\vec{u} \in L^2([0,T^*], H^2) \cap H^1([0,T^*], L^2) \hookrightarrow C([0,T^*], H^1).$$