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Abstract

Discuss the equations of motion for homogeneous,
isotropic elastic bodies, in the compressible and
incompressible case.

Present results on global existence of solutions to the initial
value problem, under small deformations and appropriate
structural conditions.
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Cast of Characters

Deformation – basic unknown

ϕ : R
+ × Ω → R

3

Orientation-preserving diffeomorphism carrying
material points to their spatial position at a given time.

(t,X) 7→ x = ϕ(t,X)
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Cast of Characters

Deformation – basic unknown

ϕ : R
+ × Ω → R

3

Orientation-preserving diffeomorphism carrying
material points to their spatial position at a given time.

(t,X) 7→ x = ϕ(t,X)

Reference configuration – assume Ω = R
3. No

boundaries.
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Deformation gradient

F (t,X) = DXϕ(t,X), det F > 0

F i
ℓ = Dℓϕ

i

CSCAMM Talk, October 24, 2006 – p.5/25



Deformation gradient

F (t,X) = DXϕ(t,X), det F > 0

F i
ℓ = Dℓϕ

i

Strain energy function (homegeneous)

W : GL(3, R) → R
+

F 7→ W (F )
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Equations of motion

Lagrangian

L[ϕ] =

∫∫

[12 ρ̄|Dtϕ|
2 − W (DXϕ)]dXdt

(ρ̄ is the constant reference density)
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Equations of motion

Lagrangian

L[ϕ] =

∫∫

[12 ρ̄|Dtϕ|
2 − W (DXϕ)]dXdt

(ρ̄ is the constant reference density)

Principle of stationary action: find formal critical points

δL[ϕ] = 0
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Equations of motion

Lagrangian

L[ϕ] =

∫∫

[12 ρ̄|Dtϕ|
2 − W (DXϕ)]dXdt

(ρ̄ is the constant reference density)

Principle of stationary action: find formal critical points

δL[ϕ] = 0

PDEs

D2
t ϕ

i − Dℓ

[

∂W

∂F i
ℓ

(Dϕ)

]

= 0
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Equations of motion

Lagrangian

L[ϕ] =

∫∫

[12 ρ̄|Dtϕ|
2 − W (DXϕ)]dXdt

(ρ̄ is the constant reference density)

Principle of stationary action: find formal critical points

δL[ϕ] = 0

PDEs

D2
t ϕ

i − Dℓ

[

∂W

∂F i
ℓ

(Dϕ)

]

= 0

(Summation convention.)
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Small displacements

We will only consider small displacements from the
equilibrium reference configuration

|ϕ(t,X) − X| ≪ 1,

which guarantees the invertibility of ϕ(t, ·).
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Small displacements

We will only consider small displacements from the
equilibrium reference configuration

|ϕ(t,X) − X| ≪ 1,

which guarantees the invertibility of ϕ(t, ·).

(More generally, it is possible to perturb from a simple
‘pre-stressed’ state σX, σ > 0.)
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PDEs for the displacement

Write
ϕ(t,X) = X + u(t,X), F = I + G
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PDEs for the displacement

Write
ϕ(t,X) = X + u(t,X), F = I + G

The PDEs may for u be written as

D2
t u

i − Aij
ℓmDℓDmuj = Bijk

ℓmn(Du)Dℓ(DmujDnuk)
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PDEs for the displacement

Write
ϕ(t,X) = X + u(t,X), F = I + G

The PDEs may for u be written as

D2
t u

i − Aij
ℓmDℓDmuj = Bijk

ℓmn(Du)Dℓ(DmujDnuk)

where

Aij
ℓm =

∂2W

∂F i
ℓ∂F j

m

(I)

and

Bijk
ℓmn(G) =

1

2

∂3W

∂F i
ℓ∂F j

m∂F k
n

(I + G)
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Assumptions

Isotropic motion: W (F ) depends on F ∈ GL(3, R) only
through the principal invariants of the strain matrix FF T .
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Assumptions

Isotropic motion: W (F ) depends on F ∈ GL(3, R) only
through the principal invariants of the strain matrix FF T .

Legendre-Hadamard condition: makes linear problem
hyperbolic

Aij
ℓmDℓDmuj = c2

2∆ui + (c2
1 − c2

2)DiDju
j , c1 > c2 > 0
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Assumptions

Isotropic motion: W (F ) depends on F ∈ GL(3, R) only
through the principal invariants of the strain matrix FF T .

Legendre-Hadamard condition: makes linear problem
hyperbolic

Aij
ℓmDℓDmuj = c2

2∆ui + (c2
1 − c2

2)DiDju
j , c1 > c2 > 0

c1 and c2 are propagation speeds for pressure and shear
waves, resp.
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Assumptions

Isotropic motion: W (F ) depends on F ∈ GL(3, R) only
through the principal invariants of the strain matrix FF T .

Legendre-Hadamard condition: makes linear problem
hyperbolic

Aij
ℓmDℓDmuj = c2

2∆ui + (c2
1 − c2

2)DiDju
j , c1 > c2 > 0

c1 and c2 are propagation speeds for pressure and shear
waves, resp.

The hydrodynamical case, W (F ) = Ŵ (det FF T ), is ruled
out because in this case c2 = 0.
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Null condition / linear degeneracy condition: restricts
the self-interaction of individual wave families.
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Null condition / linear degeneracy condition: restricts
the self-interaction of individual wave families.

Shear waves are automatically linearly degenerate in the
isotropic case.
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Null condition / linear degeneracy condition: restricts
the self-interaction of individual wave families.

Shear waves are automatically linearly degenerate in the
isotropic case.

Pressure waves

Bijk
ℓmn(0)xixjxkxℓxmxn ≡ 0, for all x ∈ R

3

Consistent with physically meaningful examples.
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Initial value problem

Consider the PDEs

D2
t u

i − Aij
ℓmDℓDmuj = Bijk

ℓmn(Du)Dℓ(DmujDnuk)
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Initial value problem

Consider the PDEs

D2
t u

i − Aij
ℓmDℓDmuj = Bijk

ℓmn(Du)Dℓ(DmujDnuk)

with an initial displacement and an initial velocity

u(0, X) = u0(X), Dtu(0, X) = u1(X)

which are sufficiently small in an appropriate energy norm.
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Global existence - compressible case

Theorem: The IVP has a unique global classical solution of
finite energy ≪ 1.
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Global existence - compressible case

Theorem: The IVP has a unique global classical solution of
finite energy ≪ 1.

Moreover, for each ℓ and m,

‖ (|X| − c1t) X̄ · DℓDmu(t, ·) ‖L2(R3) ≪ 1

and

‖ (|X| − c2t) X̄ × DℓDmu(t, ·) ‖L2(R3) ≪ 1,
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Global existence - compressible case

Theorem: The IVP has a unique global classical solution of
finite energy ≪ 1.

Moreover, for each ℓ and m,

‖ (|X| − c1t) X̄ · DℓDmu(t, ·) ‖L2(R3) ≪ 1

and

‖ (|X| − c2t) X̄ × DℓDmu(t, ·) ‖L2(R3) ≪ 1,

where X̄ = X/|X|.
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Remarks

More detailed decomposition and asymptotic behavior
available.
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Remarks

More detailed decomposition and asymptotic behavior
available.

Without the null condition, small solutions exist almost
globally. Initial data of size ε give local solutions with a
lifespan of order exp(ε−1). John, Klainerman-S
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Remarks

More detailed decomposition and asymptotic behavior
available.

Without the null condition, small solutions exist almost
globally. Initial data of size ε give local solutions with a
lifespan of order exp(ε−1). John, Klainerman-S

Without the null condition, there are spherically
symmetric examples where singularities form in finite
time, for arbitrarily small initial conditions. John
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1st order formulation

Reference map (back-to-labels map)

ϕ−1 : R
+ × R

3 → R
3, (t, x) 7→ X = ϕ−1(t, x)
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1st order formulation

Reference map (back-to-labels map)

ϕ−1 : R
+ × R

3 → R
3, (t, x) 7→ X = ϕ−1(t, x)

Inverse deformation gradient

H(t, x) = ∇xϕ−1(t, x) = F−1(t,X)
∣

∣

∣

X=ϕ−1(t,x)
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1st order formulation

Reference map (back-to-labels map)

ϕ−1 : R
+ × R

3 → R
3, (t, x) 7→ X = ϕ−1(t, x)

Inverse deformation gradient

H(t, x) = ∇xϕ−1(t, x) = F−1(t,X)
∣

∣

∣

X=ϕ−1(t,x)

Density ρ(t, x) = ρ̄ det H(t, x)
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1st order formulation

Reference map (back-to-labels map)

ϕ−1 : R
+ × R

3 → R
3, (t, x) 7→ X = ϕ−1(t, x)

Inverse deformation gradient

H(t, x) = ∇xϕ−1(t, x) = F−1(t,X)
∣

∣

∣

X=ϕ−1(t,x)

Density ρ(t, x) = ρ̄ det H(t, x)

Velocity v(t, x) = Dtϕ(t,X)
∣

∣

∣

X=ϕ−1(t,x)
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1st order PDEs – compressible motion

Balance laws

∂tρ + v · ∇v + ρ∇ · v = 0

ρ(∂tv + v · ∇v) −∇ · T (H) = 0
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1st order PDEs – compressible motion

Balance laws

∂tρ + v · ∇v + ρ∇ · v = 0

ρ(∂tv + v · ∇v) −∇ · T (H) = 0

The stress tensor T is determined from W

T = (det F )
∂W

∂F
F T = −(det H−1) HT ∂W

∂H
.
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1st order PDEs – compressible motion

Balance laws

∂tρ + v · ∇v + ρ∇ · v = 0

ρ(∂tv + v · ∇v) −∇ · T (H) = 0

The stress tensor T is determined from W

T = (det F )
∂W

∂F
F T = −(det H−1) HT ∂W

∂H
.

Transport equation ∂tH + v · ∇H + ∇vH = 0
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1st order PDEs – compressible motion

Balance laws

∂tρ + v · ∇v + ρ∇ · v = 0

ρ(∂tv + v · ∇v) −∇ · T (H) = 0

The stress tensor T is determined from W

T = (det F )
∂W

∂F
F T = −(det H−1) HT ∂W

∂H
.

Transport equation ∂tH + v · ∇H + ∇vH = 0

Constraints ∂ℓH
i
m = ∂mH i

ℓ and ρ = ρ̄ det H
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1st order PDEs – compressible motion

Balance laws

∂tρ + v · ∇v + ρ∇ · v = 0

ρ(∂tv + v · ∇v) −∇ · T (H) = 0

The stress tensor T is determined from W

T = (det F )
∂W

∂F
F T = −(det H−1) HT ∂W

∂H
.

Transport equation ∂tH + v · ∇H + ∇vH = 0

Constraints ∂ℓH
i
m = ∂mH i

ℓ and ρ = ρ̄ det H

(In the hypdrodynamical case, −T = P (ρ)I.)
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Incompressible motion

Here the deformation satisfies the internal constraint

det Dϕ(t,X) ≡ 1.

This can be enforced on the level of the variational problem
through the addition of a Lagrange multiplier.
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PDEs of incompressible elastic motion

Balance law

∂tv + v · ∇v −∇ · T (H) + ∇p = 0
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Transport equation

∂tH + v · ∇H + ∇vH = 0
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PDEs of incompressible elastic motion

Balance law

∂tv + v · ∇v −∇ · T (H) + ∇p = 0

Transport equation

∂tH + v · ∇H + ∇vH = 0

Constraints

∇ · v = 0, det H = 1, and ∂ℓH
i
m = ∂mH i

ℓ
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Assumptions

Isotropic strain energy function, as before.
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Assumptions

Isotropic strain energy function, as before.

Legendre-Hadamard condition – linearized problem has
only one propagation speed because of the
incompressibilty constraint.
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Assumptions

Isotropic strain energy function, as before.

Legendre-Hadamard condition – linearized problem has
only one propagation speed because of the
incompressibilty constraint.

Shear waves, but no pressure waves.
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Assumptions

Isotropic strain energy function, as before.

Legendre-Hadamard condition – linearized problem has
only one propagation speed because of the
incompressibilty constraint.

Shear waves, but no pressure waves.

Null condition not necessary.
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Initial conditions

Take initial conditions

H(0, x) = H0(x), v(0, x) = v0(x),

which satisfy the incompressibility constraints

det H0 = 1, ∇ · v0 = 0,

as well as
∂ℓ(H0)

i
m = ∂m(H0)

i
ℓ.
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Initial conditions

Take initial conditions

H(0, x) = H0(x), v(0, x) = v0(x),

which satisfy the incompressibility constraints

det H0 = 1, ∇ · v0 = 0,

as well as
∂ℓ(H0)

i
m = ∂m(H0)

i
ℓ.

Assume that
H0(x) − I, v0(x),

are sufficiently small in an appropriate energy norm.
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Global existence - incompressible case

Theorem: (With Becca Thomases) The initial IVP has a
unique global classical solution of finite energy ≪ 1.
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Global existence - incompressible case

Theorem: (With Becca Thomases) The initial IVP has a
unique global classical solution of finite energy ≪ 1.

Moreover, for each ℓ, m,

‖ (c2|x| − t) x̄ × DℓDmv(t, ·)‖L2(R3) ≪ 1

‖ (c2|x| − t) x̄ × DℓDmH(t, ·)‖L2(R3) ≪ 1

where x̄ = x/|x|.
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Global existence - incompressible case

Theorem: (With Becca Thomases) The initial IVP has a
unique global classical solution of finite energy ≪ 1.

Moreover, for each ℓ, m,

‖ (c2|x| − t) x̄ × DℓDmv(t, ·)‖L2(R3) ≪ 1

‖ (c2|x| − t) x̄ × DℓDmH(t, ·)‖L2(R3) ≪ 1

where x̄ = x/|x|.

More detailed asymptotic information available.
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Incompressible limit

Modify the strain energy function so as to penalize
pressure waves.

Ŵ (F ) = W (F ) + λ2h(ρ),

h(ρ̄) = h′(ρ̄) = 0, h′′(ρ) > 0, λ ≫ 1.
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Incompressible limit

Modify the strain energy function so as to penalize
pressure waves.

Ŵ (F ) = W (F ) + λ2h(ρ),

h(ρ̄) = h′(ρ̄) = 0, h′′(ρ) > 0, λ ≫ 1.

Fast propagation speed ∼ λ.
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Incompressible limit

Modify the strain energy function so as to penalize
pressure waves.

Ŵ (F ) = W (F ) + λ2h(ρ),

h(ρ̄) = h′(ρ̄) = 0, h′′(ρ) > 0, λ ≫ 1.

Fast propagation speed ∼ λ.

Penalization term does not satisfy the null condition.
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Incompressible limit

Modify the strain energy function so as to penalize
pressure waves.

Ŵ (F ) = W (F ) + λ2h(ρ),

h(ρ̄) = h′(ρ̄) = 0, h′′(ρ) > 0, λ ≫ 1.

Fast propagation speed ∼ λ.

Penalization term does not satisfy the null condition.

Consider the compressible system with data close to
equilibrium, satisfying the incompressibility constraints.
(This can be relaxed.)
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Long time local existence

Theorem: (With Becca Thomases) The penalized initial
value problem parameterized by λ has a classical small
energy solution on the time interval 0 ≤ t ≤ λ, satisfying the
uniform bound

λ2‖ρλ(t, ·) − ρ̄‖L2(R3) ≪ 1, 0 ≤ t ≤ λ.
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Long time local existence

Theorem: (With Becca Thomases) The penalized initial
value problem parameterized by λ has a classical small
energy solution on the time interval 0 ≤ t ≤ λ, satisfying the
uniform bound

λ2‖ρλ(t, ·) − ρ̄‖L2(R3) ≪ 1, 0 ≤ t ≤ λ.

As λ → ∞ the solution family converges locally uniformly in
R

+ × R
3 to a global solution of the corresponding

incompressible problem.
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Long time local existence

Theorem: (With Becca Thomases) The penalized initial
value problem parameterized by λ has a classical small
energy solution on the time interval 0 ≤ t ≤ λ, satisfying the
uniform bound

λ2‖ρλ(t, ·) − ρ̄‖L2(R3) ≪ 1, 0 ≤ t ≤ λ.

As λ → ∞ the solution family converges locally uniformly in
R

+ × R
3 to a global solution of the corresponding

incompressible problem.

Improves a result of Schochet, which established the
convergence on a fixed time interval. (See also
Klainerman-Majda, Ukai in the hydrodynamical case.)
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Method of proof

Generalized energy method using vector fields based
on rotational and scaling invariance.
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Method of proof

Generalized energy method using vector fields based
on rotational and scaling invariance.

Strong dispersive estimates, thanks to the form of the
linearized equations.
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Method of proof

Generalized energy method using vector fields based
on rotational and scaling invariance.

Strong dispersive estimates, thanks to the form of the
linearized equations.

Localization of individual wave families near their
respective characteristic cones. Controls the nonlinear
interaction of distinct wave families.
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Method of proof

Generalized energy method using vector fields based
on rotational and scaling invariance.

Strong dispersive estimates, thanks to the form of the
linearized equations.

Localization of individual wave families near their
respective characteristic cones. Controls the nonlinear
interaction of distinct wave families.

Null structure to control nonlinear interactions of waves
of the same family (pressure waves).
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Viscoelastic materials

Stress depends on strain and strain rate:
T = T (H,∇H). No field theoretic description.
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Viscoelastic materials

Stress depends on strain and strain rate:
T = T (H,∇H). No field theoretic description.

Example: Oldroyd model at infinite Weisberg number –
incompressible case

ρ̄(∂tv + v · ∇v) −∇ · T (H) + ∇p = ν∆v

∂tH + v · ∇H + ∇vH = 0

∇ · v = 0, ∂ℓH
i
m = ∂mH i

ℓ, det H = 1
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Viscoelastic materials

Stress depends on strain and strain rate:
T = T (H,∇H). No field theoretic description.

Example: Oldroyd model at infinite Weisberg number –
incompressible case

ρ̄(∂tv + v · ∇v) −∇ · T (H) + ∇p = ν∆v

∂tH + v · ∇H + ∇vH = 0

∇ · v = 0, ∂ℓH
i
m = ∂mH i

ℓ, det H = 1

Global existence for initial conditions sufficiently small
w.r.t. the Reynolds number. Liu, Lin, Zhang and Lei, Liu,
Zhou.
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Current project

Implement a modified version of the hyperbolic strategy
in the viscoelastic case.
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Current project

Implement a modified version of the hyperbolic strategy
in the viscoelastic case.

Relaxation time ∼ ν−1 when diffusive effects begin to
dominate.

CSCAMM Talk, October 24, 2006 – p.25/25



Current project

Implement a modified version of the hyperbolic strategy
in the viscoelastic case.

Relaxation time ∼ ν−1 when diffusive effects begin to
dominate.

Construct global solutions with a smallness condition
that is independent of the size of the Reynolds number.
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Current project

Implement a modified version of the hyperbolic strategy
in the viscoelastic case.

Relaxation time ∼ ν−1 when diffusive effects begin to
dominate.

Construct global solutions with a smallness condition
that is independent of the size of the Reynolds number.

Joint work with Paul Kessenich.
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