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3D incompressible Euler equations

 ut + (u · ∇)u = −∇p
∇ · u = 0
u |t=0 = u0

Define vorticity ω = ∇× u, then ω is governed by

ωt + (u · ∇)ω = ∇u · ω,
ω|t=0 = ω0 = ∇× u0.

Note ∇u is formally of the same order as ω. Thus the vortex stretching
term ∇u · ω ≈ ω2.

T. Y. Hou, Applied Mathematics, Caltech Dynamic Depletion of Vortex Stretching



History and review

Classical existence theorems.
u0 ∈ Hm(R3), m > 5/2 ⇒ u ∈ Hm up to T0 = T0(‖u0‖Hm). (Swann
1971, Kato 1972, see also Lichtenstein, Kato, Ebin-Marsden-Fischer,
etc. )

(Beale-Kato-Majda criterion, 1984)
u ceases to be classical at T ∗ if and only if∫ T∗

0

‖ω‖∞(t) dt = ∞.

Improvement of B-K-M criteria: BMO norm instead of L∞ norm.
Kozomo and Taniuchi, 2000.
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Non-blowup conditions by Constantin-Fefferman-Majda

Geometry of direction field of ω:
Constantin, Fefferman and Majda. 1996.
Let ω = |ω|ξ, no blow-up if

(Bounded velocity) ‖u‖∞ is bounded in a O(1) region of large
vorticity;
(Regular orientedness)

R t

0
‖∇ξ‖2

∞dτ is uniformly bounded;
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Local non-blowup conditions by Deng-Hou-Yu

Theorem 1 (Deng-Hou-Yu, 2005 and 2006, CPDE)

Denote by L(t) the arclength of a vortex line segment Lt around the
maximum vorticity. If

1 maxLt (|u · ξ|+ |u · n|) ≤ CU(T − t)−A with A < 1;

2 CL(T − t)B ≤ L(t) ≤ C0/ maxLt (|κ|, |∇ · ξ|) with B < 1− A;

then the solution of the 3D Euler equations remains regular up to T .

When B = 1−A, if in addition, the scaling constants CU ,C0 and CL

satisfy an algebraic inequality, the solution will remain regular.

The blowup scenario described by Kerr falls into the critical case.
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Numerical evidence of Euler singularity

In 1993 (and 2005), R. Kerr [Phys. Fluids] presented numerical evidence
of 3D Euler singularity for two anti-parallel vortex tubes:

Pseudo-spectral in x and y , Chebyshev in z direction;

Best resolution: 512× 256× 192;

‖ω‖L∞ ≈ (T − t)−1;

‖u‖L∞ ≈ (T − t)−1/2;

Anisotropic scaling: (T − t)×
√

T − t ×
√

T − t;

Vortex lines: relatively straight, |∇ξ| ≈ (T − t)−1/2;
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Figure: From: R.Kerr, Euler singularities and turbulence, 19th ICTAM Kyoto
’96, 1997, pp57-70.
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Computation of Hou and Li, J. Nonlinear Science, 2006

Figure: The 3D vortex tube and axial vorticity on the symmetry plane for initial
value.
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Numerical implementation

A pseudo-spectral method is used in all three dimensions;

Four step Runge-Kutta scheme for time integration with adaptive
time stepping;

A 36th order Fourier smoothing is used to remove aliasing error;

Careful resolution study is performed: 768× 512× 1536,
1024× 768× 2048 and 1536× 1024× 3072.

256 parallel processors with maximal memory comsumption 120Gb.
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Figure: The 3D vortex tube and axial vorticity on the symmetry plane when
t = 6.
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Figure: The local 3D vortex structures and vortex lines around the maximum
vorticity at t = 17.
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Figure: From: Kerr, Phys. Fluids A 5(7), 1993, pp1725-1746. t = 15(left) and
t = 17(right).
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Figure: The contour of axial vorticity around the maximum vorticity on the
symmetry plane at t = 15, 17.
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Figure: The contour of axial vorticity around the maximum vorticity on the
symmetry plane (the xz-plane) at t = 17.5, 18, 18.5, 19.
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Figure: The maximum vorticity ‖ω‖∞ in time using different resolutions.
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Figure: The inverse of maximum vorticity ‖ω‖∞ in time using different
resolutions.
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Figure: Study of the vortex stretching term in time, resolution
1536× 1024× 3072. The fact |ξ · ∇u · ω| ≤ c1|ω|log |ω| implies |ω| bounded
by doubly exponential.
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Figure: The plot of log log ‖ω‖∞ vs time, resolution 1536× 1024× 3072.
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Figure: Maximum velocity ‖u‖∞ in time using different resolutions.
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The local geometric criteria applies

Recall the local geometric criteria by Deng-Hou-Yu:

1 maxLt (|u · ξ|+ |u · n|) ≤ CU(T − t)−A for some A < 1;

2 CL(T − t)B ≤ L(t) ≤ C0/maxLt (|κ|, |∇ · ξ|) for some B < 1− A,

then the solution of the 3D Euler equations remains regular up to T .

Since u is bounded, we have A = 0. Therefore, we can take
B = 1/2 < 1− A, the theory applies.

T. Y. Hou, Applied Mathematics, Caltech Dynamic Depletion of Vortex Stretching



2/3 Dealiasing vs high order Fourier smoothing

A 36-order Fourier smoother is used to remove aliasing error;

The Fourier smoother is shaped as along the xj direction

ρ(2kj/Nj) ≡ exp(−36(2kj/Nj)
36)

where kj is the wave number (|kj | 6 Nj/2).
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Comparison of spectra with resolution 768× 512× 1024
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Figure: The enstrophy spectra versus wave numbers. The dashed lines and
dashed-dotted lines are solutions with 768× 512× 1024 using the 2/3
dealiasing rule and the Fourier smoothing, respectively. The times for the
spectra lines are at t = 15, 16, 17, 18, 19 respectively.
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Comparison of spectra with resolution 1024× 768× 2048
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energy spectra comparison.

dashed:1024x768x2048, 2/3rd dealiasing
dash−dotted:1024x768x2048, FS
 solid:1536x1024x3072, FS
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Comparison of maximum velocity with resolution
1024× 768× 2048
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maximum velocity in time, 1024x768x2048: solid(Fourier smoothing), dashed(2/3rd dealiasing).
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Comparison of maximum vorticity with resolution
1024× 768× 2048
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maximum vorticity in time, 1024x768x2048: solid(Fourier smoothing), dashed(2/3rd dealiasing).
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Burgers equation: maximum errors comparison with
N = 1024, u0(x) = sin(x), Tshock = 1.
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pointwise error comparison on 1024 grids, t=0.9875: blue(Fourier smoothing), red(2/3rd dealiasing)
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Burgers equation: maximum errors comparison with
N = 2048, u0(x) = sin(x), Tshock = 1.
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pointwise error comparison on 2048 grids, t=0.9875: blue(Fourier smoothing), red(2/3rd dealiasing)
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Burgers equation: spectra comparison with N = 4096
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spectra comparison on 4096 grids.

blue: Fourier smoothing
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Figure: Spectra comparison on different resolutions at a sequence of moments.
The additional modes kept the Fourier smoothing method higher than the
2/3rd dealiasing method are in fact correct.
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Burgers equation: spectra comparison with N = 8192
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Figure: Spectra comparison on different resolutions at a sequence of moments.
The additional modes kept the Fourier smoothing method higher than the
2/3rd dealiasing method are in fact correct.
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3D axisymmetric Navier-Stokes equations with swirl

Consider the 3D axi-symmetric incompressible Navier-Stokes equations

uθ
t + v ruθ

r + v zuθ
z = ν

(
∇2 − 1

r2

)
uθ − 1

r
v ruθ, (1)

ωθ
t + v rωθ

r + v zωθ
z = ν

(
∇2 − 1

r2

)
ωθ +

1

r

(
(uθ)2

)
z
+

1

r
v rωθ,(2)

−
(
∇2 − 1

r2

)
ψθ = ωθ, (3)

where uθ, ωθ and ψθ are the angular components of the velocity, vorticity
and stream function respectively, and

v r = −∂ψ
θ

∂z
, v z =

1

r

∂

∂r
(rψθ).

Note that equations (1)-(3) completely determine the evolution of the 3D
axisymmetric Navier-Stokes equations.
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A 1D model for the 3D Navier-Stokes equations

Note that any singularity must occur along the symmetry axis
[Caffarelli-Kohn-Nirenberg].
Expand the solution uθ, ωθ and ψθ around r = 0 as follows [Liu-Wang]:

uθ(r , z , t) = ru1(z , t) +
r3

3!
u3(z , t) +

r5

5!
u5(z , t) + · · · ,

ωθ(r , z , t) = rω1(z , t) +
r3

3!
ω3(z , t) +

r5

5!
ω5(z , t) + · · · ,

ψθ(r , z , t) = rψ1(z , t) +
r3

3!
ψ3(z , t) +

r5

5!
ψ5(z , t) + · · · .

Substitute the above expansions into (1)-(3). After cancelling r from
both sides and setting r = 0, we obtain

(u1)t + 2ψ1 (u1)z = ν (4/3u3 + (u1)zz) + 2 (ψ1)z u1,

(ω1)t + 2ψ1 (ω1)z = ν (4/3ω3 + (ω1)zz) +
(
u2

1

)
z
,

− (4/3ψ3 + (ψ1)zz)) = ω1.
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Note that u3 = uθ
rrr (0, z , t), (u1)zz = uθ

rzz(0, z , t). If we further assume

uθ
rzz � uθ

rrr , ωθ
rzz � ωθ

rrr , ψθ
rzz � ψθ

rrr ,

we can ignore the coupling to u3, ω3, ψ3, and obtain our 1D model:

(u1)t + 2ψ1 (u1)z = ν(u1)zz + 2 (ψ1)z u1, (4)

(ω1)t + 2ψ1 (ω1)z = ν(ω1)zz +
(
u2

1

)
z
, (5)

−(ψ1)zz = ω1. (6)

Let ũ = u1, ṽ = −(ψ1)z , and ψ̃ = ψ1. The above system becomes

(ũ)t + 2ψ̃(ũ)z = ν(ũ)zz − 2ṽ ũ, (7)

(ṽ)t + 2ψ̃(ṽ)z = ν(ṽ)zz + (ũ)2 − (ṽ)2 + c(t), (8)

where ṽ = −(ψ̃)z , ṽz = ω̃, and c(t) is an integration constant to enforce
the mean of ṽ equal to zero.
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The 1D model is exact!

A surprising result is that the above 1D model is exact.

Theorem 2. Let u1, ψ1 and ω1 be the solution of the 1D model
(4)-(6) and define

uθ(r , z , t) = ru1(z , t), ωθ(r , z , t) = rω1(z , t), ψθ(r , z , t) = rψ1(z , t).

Then (uθ(r , z , t), ωθ(r , z , t), ψθ(r , z , t)) is an exact solution of the
3D Navier-Stokes equations.

Theorem 2 tells us that the 1D model (4)-(6) preserves some essential
nonlinear structure of the 3D axisymmetric Navier-Stokes equations.
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The ODE model

Consider an ODE model by ignoring the convection and diffusion terms.

(ũ)t = −2ṽ ũ, (9)

(ṽ)t = (ũ)2 − (ṽ)2. (10)

Theorem 3. Assume that ũ0 6= 0. Then the solution (ũ(t), ṽ(t)) of the
ODE system (9)-(10) exists for all times. Moreover, we have

lim
t→∞

ũ(t) = 0, lim
t→∞

ṽ(t) = 0.

Proof. Let w = ũ + i ṽ . Then the ODE system is reduced to a complex

nonlinear ODE:
dw

dt
= iw2, w(0) = w0,

which can be solved analytically. The solution has the form

w(t) =
w0

1− iw0t
.
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The phase diagram for the ODE system

 
 

 
 

 
 

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

u

v

Figure: The phase diagram for the ODE system.
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The Reaction Diffusion Model

Consider the reaction-diffusion system:

(ũ)t = νũzz − 2ṽ ũ, (11)

(ṽ)t = νṽzz + (ũ)2 − (ṽ)2. (12)

Intuitively, one may think that the diffusion term would help to
stabilize the dynamic growth induced by the nonlinear terms.

However, because the nonlinear ODE system in the absence of
viscosity is very unstable, the diffusion term can actually have a
destabilizing effect.
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Growth at early times: ũ0(z) = (2 + sin(2πz))/1000,
ṽ0(z) = −1000− sin(2πz), ν = 1.
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Energy method does not work for the 1D model!

If we multiply the ũ-equation by ũ, and the ṽ -equation by ṽ , and
integrate over z , we get

1

2

d

dt

∫ 1

0

ũ2dz = −3

∫ 1

0

(ũ)2ṽdz − ν

∫ 1

0

ũ2
zdz ,

1

2

d

dt

∫ 1

0

ṽ2dz =

∫ 1

0

ũ2ṽdz − 3

∫ 1

0

(ṽ)3dz − ν

∫ 1

0

ṽ2
z dz .

Even for this 1D model, the energy estimate shares the some
essential difficulty as the 3D Navier-Stokes equations.

It is not clear how to control the nonlinear vortex stretching like
terms by the diffusion terms, unless we assume∫ T

0

‖ṽ‖L∞dt <∞, t ≤ T .
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Global Well-Posedness of the full 1D Model

Theorem 4. Assume that ũ(z , 0) and ṽ(z , 0) are in Cm[0, 1] with m ≥ 1
and periodic with period 1. Then the solution (ũ, ṽ) of the 1D model will
be in Cm[0, 1] for all times and for ν ≥ 0.

Proof. The key is to obtain a priori pointwise estimate for the nonlinear
term ũ2

z + ṽ2
z . Differentiating the ũ and ṽ -equations w.r.t z , we get

(ũz)t + 2ψ̃(ũz)z − 2ṽ ũz = −2ṽ ũz − 2ũṽz + ν(ũz)zz ,

(ṽz)t + 2ψ̃(ṽz)z − 2ṽ ṽz = 2ũũz − 2ṽ ṽz + ν(ṽz)zz .

Note that the convection term contributes to stability by cancelling
one of the nonlinear terms on the right hand side. This gives

(ũz)t + 2ψ̃(ũz)z = −2ũṽz + ν(ũz)zz , (13)

(ṽz)t + 2ψ̃(ṽz)z = 2ũũz + ν(ṽz)zz . (14)
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Multiplying (13) by 2ũz and (14) by 2ṽz , we have

(ũ2
z )t + 2ψ̃(ũ2

z )z = −4ũũz ṽz + 2νũz(ũz)zz , (15)

(ṽ2
z )t + 2ψ̃(ṽ2

z )z = 4ũũz ṽz + 2νṽz(ṽz)zz . (16)

Now, we add (15) to (16). Surprisingly, the nonlinear vortex
stretching-like terms cancel each other. We get(

ũ2
z + ṽ2

z

)
t
+ 2ψ̃

(
ũ2

z + ṽ2
z

)
z

= 2ν (ũz(ũz)zz + ṽz(ṽz)zz) .

Moreover we can rewrite the diffusion term in the following form:(
ũ2

z + ṽ2
z

)
t
+ 2ψ̃

(
ũ2

z + ṽ2
z

)
z

= ν
(
ũ2

z + ṽ2
z

)
zz
− 2ν

[
(ũzz)

2 + (ṽzz)
2
]
.

Thus, (ũ2
z + ṽ2

z ) satisfies a maximum principle for all ν ≥ 0:

‖ũ2
z + ṽ2

z ‖L∞ ≤ ‖(ũ0)
2
z + (ṽ0)

2
z‖L∞ .

T. Y. Hou, Applied Mathematics, Caltech Dynamic Depletion of Vortex Stretching



Construction of a family of globally smooth solutions

Theorem 5. Let φ(r) be a smooth cut-off function and u1, ω1 and ψ1 be
the solution of the 1D model. Define

uθ(r , z , t) = ru1(z , t)φ(r) + ũ(r , z , t),

ωθ(r , z , t) = rω1(z , t)φ(r) + ω̃1(r , z , t),

ψθ(r , z , t) = rψ1(z , t)φ(r) + ψ̃(r , z , t).

Then there exists a family of globally smooth functioons ũ, ω̃ and ψ̃ such
that uθ, ωθ and ψθ are globally smooth solutions of the 3D
Navier-Stokes equations with finite energy.
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Concluding Remarks

Our analysis and computation demonstrate a subtle dynamic
depletion of vortex stretching due to local geometric regularity of
vortex lines.

Our analysis also reveals a subtle dynamic stability property due to
the special structure of nonlinearity.

Nonlinear vortex stretching on one hand can lead to large dynamic
growth, but on the other hand has a surprising stabilizing effect.

Convection term also plays an essential role in stabilizing the
nonlinear growth due to vortex stretching.

New analytic tools that exploit the local structure of the singularity
and nonlinearity are needed.
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