Statistical NSE and Stochastic Representation

Peter Constantin
Mathematics, U. of Chicago

CSCAMM, October 2006

Thanks: NSF, DOE

Statistical solutions: F. Ramos

Stochastic representation G. Iyer

Outline:

1. Inviscid limit: time matters
2. Limit for steady solutions
3. Limit for Stationary Statistical Solutions
4. Stochastic Representation and Applications

Inviscid Limit: Time Matters

- $S^{E}(t) u_{0}$, solution of incompressible Euler eqns.
- $S_{\nu}^{N S}(t) u_{0}$, solution of incompressible NSE

Finite Time Zero Viscosity Limit:

$$
\lim _{\nu \rightarrow 0} S_{\nu}^{N S}(t) u_{0}=S^{E}(t) u_{0}, \text { for } t \leq T
$$

Infinite Time Zero Viscosity Limit:

$$
\lim _{\nu \rightarrow 0} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \Phi\left(S_{\nu}^{N S}(t) u_{0}\right) d t=\int \Phi(u) d \mu^{E}(u)
$$

Time and zero viscosity limits do not commute.

Finite Time Zero Viscosity Limit

-Smooth regime: Swann (1971) and Kato (1972) : short time. Constantin (1986): As long as solution exists, convergence in $H^{s^{\prime}}$, with $s^{\prime}<s$, for $s>d / 2+1$. Optimal rate.
-Smooth regime: Convergence in H^{s} : Kato (1975) short time, Masmoudi (2006), as long as solution remains in H^{s}. Optimal rate.
-Nonsmooth regime = Vortex patches: Constantin and Wu (1996), Abidi and Danchin (2004), Masmoudi (2006). Rates of convergence exist, but deteriorate with loss of smoothness.

Damped Driven NSE

$$
\left\{\begin{array}{c}
\partial_{t} u+u \cdot \nabla u-\nu \Delta u+\gamma u+\nabla p=f \\
\nabla \cdot u=0
\end{array}\right.
$$

with $\gamma>0$ a fixed damping coefficient, $\nu>0, f$ time independent with zero mean and $f \in\left(W^{1, \infty} \cap H^{1}\right)\left(\mathbb{R}^{2}\right)$.

Theorem 1 Let u_{0} be smooth, divergence-free, $u_{0} \in W^{1, p}\left(\mathbb{R}^{2}\right)^{2}, p \geq 2$. Then the solution with initial datum u_{0} exists for all time, is unique, smooth, and obeys the energy equality

$$
\frac{d}{2 d t} \int_{\mathbb{R}^{2}}|u|^{2} d x+\gamma \int_{\mathbb{R}^{2}}|u|^{2} d x+\nu \int_{\mathbb{R}^{2}}|\nabla u|^{2} d x=\int_{\mathbb{R}^{2}} f \cdot u d x
$$

The kinetic energy is bounded uniformly in time, with bounds independent of viscosity:
$\|u(\cdot, t)\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq e^{-\gamma t}\left\{\|u(\cdot, 0)\|_{L^{2}\left(\mathbb{R}^{2}\right)}-\frac{1}{\gamma}\|f\|_{L^{2}\left(\mathbb{R}^{2}\right)}\right\}+\frac{1}{\gamma}\|f\|_{L^{2}\left(\mathbb{R}^{2}\right)}$
The vorticity ω (the curl of the incompressible two dimensional velocity)

$$
\omega=\partial_{1} u_{2}-\partial_{2} u_{1}=\nabla^{\perp} \cdot u
$$

obeys

$$
\partial_{t} \omega+u \cdot \nabla \omega-\nu \Delta \omega+\gamma \omega=g,
$$

with $g \in\left(L^{2} \cap L^{\infty}\right)\left(\mathbb{R}^{2}\right)$ the vorticity source, $g=\nabla^{\perp} \cdot f$. The p-enstrophy is bounded uniformly in time, with bounds independent of viscosity

$$
\|\omega(\cdot, t)\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leq e^{-\gamma t}\left\{\|\omega(\cdot, 0)\|_{L^{p}\left(\mathbb{R}^{2}\right)}-\frac{1}{\gamma}\|g\|_{L^{p}\left(\mathbb{R}^{2}\right)}\right\}+\frac{1}{\gamma}\|g\|_{L^{p}\left(\mathbb{R}^{2}\right)}
$$

Stationary Solutions

Let $u^{(\nu)}$ be a sequence of solutions of

$$
\left\{\begin{array}{c}
-\nu \Delta u+\gamma u+\nabla p+u \cdot \nabla u=f \\
\nabla \cdot u=0
\end{array}\right.
$$

with vorticities $\omega^{(\nu)}$ obeying

$$
\left\{\begin{array}{c}
\gamma \omega+u \cdot \nabla \omega-\nu \Delta \omega=g, \\
\omega=\nabla^{\perp} \cdot u .
\end{array}\right.
$$

We let $\nu \rightarrow 0$ but keep f, g, γ fixed.

Theorem 2 There exists a subsequence $\omega^{(\nu)}$ that converges weakly

$$
\omega^{(0)}=w-\lim _{\nu \rightarrow 0} \omega^{(\nu)}
$$

in L^{2}. The function $\omega^{(0)}$ is a renormalized solution of the inviscid equation

$$
\left\{\begin{array}{c}
\gamma \omega^{(0)}+u^{(0)} \cdot \nabla \omega^{(0)}=g \\
\omega^{(0)}=\nabla^{\perp} \cdot u^{(0)}
\end{array}\right.
$$

In addition, $\omega^{(0)} \in L^{2}\left(\mathbb{R}^{2}\right), u^{(0)} \in H^{1}\left(\mathbb{R}^{2}\right)$,the equation holds in $W_{\text {loc }}^{-1, q}\left(\mathbb{R}^{2}\right)$ for any $1<q<2$, and the limit balance

$$
\gamma\left\|\omega^{(0)}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}=\int_{\mathbb{R}^{2}} g \omega^{(0)} d x
$$

holds.

Absence of anomalous dissipation

Theorem 3 Let $\omega^{(\nu)}$ be a sequence of solutions. Then the enstrophy dissipation vanishes in the limit $\nu \rightarrow 0$:

$$
\lim _{\nu \rightarrow 0} \nu \int_{\mathbb{R}^{2}}\left|\nabla \omega^{(\nu)}\right|^{2} d x=0
$$

Proof Fatou + limit balance:

$$
\begin{aligned}
\underset{\nu \rightarrow 0}{\limsup } \nu\left\|\nabla \omega^{(\nu)}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2} & \leq \limsup \int_{\nu \rightarrow 0} g \omega^{(\nu)} d x-\liminf _{\nu \rightarrow 0} \gamma\left\|\omega^{(\nu)}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2} \\
& \leq \int_{\mathbb{R}^{2}} g \omega^{(0)} d x-\gamma\left\|\omega^{(0)}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}=0 .
\end{aligned}
$$

Statistical Stationary Solutions

The Bogoliubov-Krylov method

$$
L I M_{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \Phi\left(S^{N S, \gamma}(t)\right) d t
$$

and statistical stationary solutions in the sense of Foias:

Definition A stationary statistical solution (SSS) of the damped, driven Navier-Stokes equation on the phase space of vorticity is a probability measure μ^{ν} on $L^{2}\left(\mathbb{R}^{2}\right)$ such that

1. $\int_{L^{2}\left(\mathbb{R}^{2}\right)}\|\omega\|_{H^{1}\left(\mathbb{R}^{2}\right)}^{2} d \mu^{\nu}(\omega)<\infty$;
2. $\int_{L^{2}\left(\mathbb{R}^{2}\right)}\left\langle u \cdot \nabla \omega+\gamma \omega-g, \Psi^{\prime}(\omega)\right\rangle+\nu\left\langle\nabla_{x} \omega, \nabla_{x} \Psi^{\prime}(\omega)\right\rangle d \mu^{\nu}(\omega)=0$ for any test functional $\psi \in \mathcal{T}$, and
3. $\int_{E_{1} \leq\|\omega\|_{L^{2}} \leq E_{2}}\left\{\gamma|\omega|_{L^{2}}^{2}+\nu\|\omega\|^{2}-\langle\mathbf{g}, \omega\rangle\right\} d \mu^{\nu}(\omega)=0$.
where the class of cylindrical test functions \mathcal{T} is the set of functions Ψ : $L^{2}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{R}$ of the form

$$
\begin{equation*}
\Psi(\omega)=\psi\left(\left\langle\alpha(\omega), \mathbf{w}_{1}\right\rangle, \ldots,\left\langle\alpha(\omega), \mathbf{w}_{m}\right\rangle\right), \tag{1}
\end{equation*}
$$

where ψ is a C^{1} scalar valued function defined on $\mathbb{R}^{m}, m \in \mathbb{N} ; \mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ belong to $H_{0}^{1}(\Omega)$, where $\Omega \subset \mathbb{R}^{2}$ is a bounded domain, and

$$
\alpha(\omega)=J_{\epsilon} \beta\left(J_{\epsilon} \omega\right)
$$

where $\beta \in C^{2}$ is a compactly supported function of one real variable and J_{ϵ} is the convolution operator

$$
J_{\epsilon}(\omega)=j_{\epsilon} \star \omega
$$

with a standard mollifier.

Theorem 4 For $u_{0} \in\left(W^{\infty} \cap H^{1}\right)\left(\mathbb{R}^{2}\right)$, the Banach limit

$$
L I M_{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \Phi\left(S^{N S, \gamma}(s) u_{0}\right) d s=\int_{L^{2}} \Phi(\omega) d \mu(\omega)
$$

is a SSS of the damped, driven NSE. Such limits are supported in

$$
\left\{\omega: \left\lvert\,\|\omega\|_{L^{p}} \leq \frac{\|g\|_{L^{p}}}{\gamma}\right.\right\}
$$

for $2 \leq p \leq \infty$.

Definition A probability measure μ^{E} on $L^{2}\left(\mathbb{R}^{2}\right)$ is a renormalized stationary statistical solution of the damped, driven Euler equation if it satisfies

$$
\int_{L^{2}\left(\mathbb{R}^{2}\right)}\left\langle\gamma \omega-g, \Psi^{\prime}(\omega)\right\rangle-\left\langle u \omega, \nabla_{x} \Psi^{\prime}(\omega)\right\rangle d \mu^{E}(\omega)=0 ;
$$

for any test fuctional $\psi \in \mathcal{T}_{0}$, where $\psi \in \mathcal{T}_{0}$ is a subclass of $\psi \in \mathcal{T}$, where the functions w_{j} satisfy $w_{j} \in C_{0}^{1}(\Omega)$, where Ω is bounded in \mathbb{R}^{2}. Furthermore, we say that a renormalized stationary statistical solution of the Euler Equation μ^{E} satisfies the enstrophy balance if

$$
\int_{L^{2}\left(\mathbb{R}^{2}\right)}\left\{\gamma|\omega|_{L^{2}}^{2}-\langle\mathbf{g}, \omega\rangle\right\} d \mu^{E}(\omega)=0 .
$$

Theorem 5 Any sequence of SSS of the damped, driven NSE equation has a weakly convergent subsequence. The limit μ^{E} is a RSSS of the damped, driven Euler equation. If the supports of the SSS are uniformly bounded in L^{∞} then μ^{E} satisfies the enstrophy balance.

Idea for the proof of enstrophy balance

From cylindrical test functions one reaches

$$
\begin{aligned}
& \left.\int_{L^{2}\left(\mathbb{R}^{2}\right)}\left\langle\beta\left(\omega_{\epsilon}\right)\right)_{\epsilon},\left(\beta^{\prime}\left(\omega_{\epsilon}\right)(\gamma \omega-g)_{\epsilon}\right)_{\epsilon}\right\rangle d \mu^{E}(\omega) \\
& \left.+\int_{L^{2}\left(\mathbb{R}^{2}\right)}\left\langle\beta\left(\omega_{\epsilon}\right)\right)_{\epsilon},\left(\beta^{\prime}\left(\omega_{\epsilon}\right) \partial_{k}\left(u_{k} \omega\right)_{\epsilon}\right)_{\epsilon}\right\rangle d \mu^{E}(\omega)=0
\end{aligned}
$$

where $h_{\epsilon}=J_{\epsilon} h$. The first integral converges to the required enstrophy balance. The second integral converges to zero. In order to see that, we write

$$
I_{\beta, \epsilon}=\int_{\mathbb{R}^{2}}\left(\beta\left(\omega_{\epsilon}\right)\right)_{\epsilon}\left[\beta^{\prime}\left(\omega_{\epsilon}\right) \partial_{k}\left(u_{k} \omega\right)_{\epsilon}\right]_{\epsilon} d x
$$

Integrating by parts we write

$$
I_{\beta, \epsilon}=J_{\beta, \epsilon}+K_{\beta, \epsilon}
$$

with

$$
J_{\beta, \epsilon}=-\int \partial_{k}\left(\beta\left(\omega_{\epsilon}\right)\right)_{\epsilon}\left[\beta^{\prime}\left(\omega_{\epsilon}\right)\left(u_{k} \omega\right)_{\epsilon}\right]_{\epsilon} d x
$$

and

$$
K_{\beta, \epsilon}=-\int\left(\beta\left(\omega_{\epsilon}\right)_{\epsilon}\right)\left[\beta^{\prime \prime}\left(\omega_{\epsilon}\right)\left(\partial_{k} \omega_{\epsilon}\right)\left(u_{k} \omega\right)_{\epsilon}\right]_{\epsilon} d x
$$

We split $J_{\beta, \epsilon}$ further

$$
J_{\beta, \epsilon}=L_{\beta, \epsilon}+M_{\beta, \epsilon}
$$

with

$$
L_{\beta, \epsilon}=-\int \partial_{k}\left(\beta\left(\omega_{\epsilon}\right)\right)_{\epsilon}\left[\beta^{\prime}\left(\omega_{\epsilon}\right)\left(u_{k}\right)_{\epsilon}(\omega)_{\epsilon}\right]_{\epsilon} d x
$$

and

$$
M_{\beta, \epsilon}=-\int \partial_{k}\left(\beta\left(\omega_{\epsilon}\right)\right)_{\epsilon}\left[\beta^{\prime}\left(\omega_{\epsilon}\right) \rho_{\epsilon}\left(u_{k}, \omega\right)\right]_{\epsilon} d x
$$

We estimate

$$
\left|M_{\beta, \epsilon}\right| \leq C \sup |\beta| \sup \left|\beta^{\prime}\right| \frac{1}{\epsilon}\left\|\rho_{\epsilon}(u, \omega)\right\|_{L^{1}\left(\mathbb{R}^{2}\right)}
$$

We used the fact that

$$
\left\|\partial_{k}(\beta)_{\epsilon}\right\|_{L^{\infty}} \leq C \frac{1}{\epsilon}\|\beta\|_{L^{\infty}}
$$

From the properties of ρ it follows that

$$
\left|M_{\beta, \epsilon}\right| \leq C \sup |\beta| \sup \left|\beta^{\prime}\right|\|\omega\|_{L^{2}} \int j(z) \mid z\| \| \delta_{\epsilon z} \omega \|_{L^{2}} d z
$$

where $\left(\delta_{h} \omega\right)(x)=\omega(x-h)-\omega(x)$. We fix $\epsilon>0$ and we consider a sequence of compactly supported functions $\beta(y)$ that converge uniformly on the compact $R_{\infty}=\left[-2 \frac{\|g\|_{L^{\infty}}}{\gamma}, 2 \frac{\|g\|_{L^{\infty}}}{\gamma}\right]$ together with two derivatives to the function y, (i.e $\beta \rightarrow y, \beta^{\gamma} \rightarrow 1, \beta^{\prime \prime} \rightarrow 0$) and such that

$$
\left.|\beta(y)|+\left|\beta^{\prime}(y)\right|+\left|\beta^{\prime \prime}(y)\right|\right) \leq C .
$$

It is easy to see that for fixed $\epsilon>0$

$$
\lim _{\beta \rightarrow y} \int\left(L_{\beta, \epsilon}+K_{\beta, \epsilon}\right) d \mu^{E}=0
$$

On the other hand, from

$$
\int\left|K_{\beta, \epsilon}\right| d \mu^{E} \leq C \iint j(z)|z|\left\|\delta_{\epsilon z} \omega\right\|_{L^{2}} d z d \mu^{E}
$$

it follows that

$$
\lim _{\epsilon \rightarrow 0} \lim \sup _{\beta \rightarrow y} \int\left|K_{\beta, \epsilon}\right| d \mu^{E}=0
$$

We used that the support of μ^{E} is bounded in L^{∞}.

Absence of anomalous dissipation

Theorem 6 Let $f \in\left(H^{1} \cap W^{1, \infty}\right)\left(\mathbb{R}^{2}\right)$. Let $u_{0} \in H^{1} \cap W^{1, \infty}$ be divergence free. Let ω^{ν} be the curl of the solution of the damped, driven NSE. Then

$$
\lim _{\nu \rightarrow 0} \lim \sup _{T \rightarrow \infty} \frac{\nu}{T} \int_{0}^{T} \int\left|\nabla \omega^{(\nu)}(x, t)\right|^{2} d x d t=0
$$

holds.

Idea of proof

We argue by contradiction. We find $\delta>0$, a sequence of viscosities, $\nu_{j} \rightarrow 0$ and for each, a sequence of times $T_{k}^{(j)} \rightarrow \infty$ so that at each fixed ν_{j}, the time averges of the dissipation integrals are bounded below by $\delta>0$. We use the NSE equation and the balance
$\frac{\nu_{j}}{T_{k}^{(j)}} \int_{0}^{T_{k}^{(j)}}\left\|\nabla \omega^{\nu_{j}}\right\|_{L^{2}}^{2} d t+\frac{1}{T_{k}^{(j)}} \int_{0}^{T_{k}^{(j)}}\left\{\gamma\left\|\omega^{\nu_{j}}\right\|_{L^{2}}^{2}-\left\langle g, \omega^{\nu_{j}}\right\rangle\right\} d t=O\left(\frac{1}{T_{k}^{(j)}}\right)$
Passing to a subsequence of times, still at fixed ν_{j} we obtain a SSS of NSE, $\mu^{\nu_{j}}$, with

$$
\int\left\{\gamma|\omega|_{L^{2}}^{2}-\langle g, \omega\rangle\right\} d \mu^{\nu_{j}} \leq-\delta
$$

The support of the sequence is bounded apriori in $L^{\infty} \cap L^{2}$, uniformly in j. Passing to a subsequence we have a RSSS of the damped, driven Euler
equations μ^{E} that satisfies

$$
\int\left\{\gamma|\omega|_{L^{2}}^{2}-\langle g, \omega\rangle\right\} d \mu^{E}(\omega) \leq-\delta
$$

and that is absurd in view of the enstrophy balance of the limit.

Remarks

-result conjectured by D. Bernard in 2000.
-Finite time zero viscosity limit without damping: Eyink, and Lopes-Filho, Mazzucato, Nussenzveig Lopes.
\bullet No vanishing rates known.

- No infinite time result w/o damping known.

Stochastic Lagrangian Representation: Navier-Stokes

Theorem 7 Let W be an n-dimensional Wiener process. Let $k \geq 1$ and assume $u_{0} \in C^{k+1, \alpha}$ is a deterministic divergence-free vector field. Let (u, X) solve the stochastic system

$$
\left\{\begin{array}{c}
d X=u d t+\sqrt{2 \nu} d W, \\
A=X^{-1}, \\
u=\mathbb{E P}\left\{\left(\nabla^{T} A\right)\left(u_{0} \circ A\right)\right\}
\end{array}\right.
$$

Then u solves the deterministic incompressible NSE:

$$
\begin{gathered}
\partial_{t} u+u \cdot \nabla u-\nu \Delta u+\nabla p=0, \\
\nabla \cdot u=0
\end{gathered}
$$

-When $\nu=0$, all is deterministic, and we recover the Eulerian-Lagrangian deterministic representation based on the Weber formula.

Remarks

- $A=X^{-1}$ is the spatial inverse ("back-to-labels"). It exists, and it is as smooth as X. Both are stochastic.

-Forced NSE

$$
\left\{\begin{array}{c}
d X=u d t+\sqrt{2 \nu} d W \\
A=X^{-1} \\
u=\mathbb{E P}\left\{\left(\nabla^{T} A\right)\left[u_{0}+\int_{0}^{t}\left(\nabla^{t} X\right) f\left(X_{s}, s\right) d s\right] \circ A(t)\right\}
\end{array}\right.
$$

represents

$$
\partial_{t} u+u \cdot \nabla u-\nu \Delta u+\nabla p=f, \quad \nabla \cdot u=0
$$

-Representations for Lans-alpha, Burgers. No direct representation for Leray regularization.

Local Existence for the Stochastic System, Remarkable Formulae

Theorem 8 Let $u_{0} \in C^{k+1, \alpha}$ be divergence-free. There exists a $T>$ 0 depending on the norm of u_{0}, but independent of viscosity, so that a solution (u, X) of the stochastic system exists on $[0, T]$. Moreover, $\|u\|_{C^{k+1, \alpha}} \leq U$ for $t \in[0, T]$ with U dependent on the norm of the initial data and T.

Theorem 9 Let $\omega=\nabla \times u, \omega_{0}=\nabla \times u_{0}$. Then

$$
\omega=\mathbb{E}\left\{\left((\nabla X) \omega_{0}\right) \circ A\right\} .
$$

In two dimensions,

$$
\omega=\mathbb{E}\left[\omega_{0} \circ A\right] .
$$

For forced systems in $n=2,3$, replace in the formulae above ω_{0} by

$$
\xi_{t}=\omega_{0}+\int_{0}^{t}\left(\nabla X_{s}\right)^{-1} g\left(X_{s}, s\right) d s
$$

with $g=\nabla \times f$.
-Circulation is conserved.

Let

$$
\widetilde{u}=\mathbb{P}\left\{\left(\nabla^{t} A\right)\left(u_{0} \circ A\right)\right\}
$$

This is a stochastic incompressible velocity, with initial data u_{0} and

$$
\begin{gathered}
u=\mathbb{E} \widetilde{u} \\
\oint_{X(\gamma)} \tilde{u} \cdot d r=\oint_{\gamma} u_{0} \cdot d r .
\end{gathered}
$$

Stochastic Lagrangian Transport

-The "back-to-labels" process obeys

$$
d A_{t}+[u \cdot \nabla A-\nu \Delta A] d t+\sqrt{2 \nu} \nabla A d W=0
$$

For any smooth function $\phi(a, t), v(x, t)=\phi(A(x, t), t)$ obeys

$$
d v_{t}+[u \cdot \nabla v-\nu \Delta v] d t+\sqrt{2 \nu} \nabla v d W=\partial_{t} \phi \circ A
$$

-Cancellation, chain rule as if it were a first order PDE, due to the joint quadratic variation.
\bullet Valid if u is smooth, not necessarily divergence-free.

Stochastically Passive Scalars

$$
d \theta_{t}+[u \cdot \nabla \theta-\nu \Delta \theta] d t+\sqrt{2 \nu} \nabla \theta d W=0
$$

$\bullet \theta_{1}, \theta_{2}, \mathrm{sps} \Rightarrow \theta_{1} \theta_{2} \mathrm{sps}$
-with viscosity, inviscid invariants become stochastically passive

Stochastic Particles

Let

$$
m=M(a, \alpha, t)
$$

solve

$$
d M=(u(X, t)+G(X, M, t)) d t+\sqrt{2 \kappa} d W
$$

with

$$
M(a, \alpha, 0)=\alpha
$$

Let

$$
(A(x, t), R(x, m, t))=(X(a, t), M(a, \alpha, t))^{-1}
$$

It exists and a.s. for all t

$$
A(X(a, t), t)=a, \quad R(X(a, t), M(a, \alpha, t))=\alpha
$$

Then

$$
f(x, m, t)=f_{0}(A(x, t), R(x, m, t)) \operatorname{det}\left(\nabla_{m} R\right)(x, m, t)
$$

solves

$$
\begin{aligned}
d f+ & \left(u \cdot \nabla_{x} f+\operatorname{div}_{g}(G f)-\kappa \Delta_{g} f-\nu \Delta_{x} f\right) d t= \\
& -\sqrt{2 \kappa} \nabla_{g} f \cdot d W-\sqrt{2 \nu} \nabla_{x} f \cdot d W=0
\end{aligned}
$$

and so

$$
\bar{f}=\mathbb{E} f
$$

solves

$$
\partial_{t} \bar{f}+u \cdot \nabla_{x} \bar{f}+\operatorname{div}_{g}(G \bar{f})=\kappa \Delta_{g} \bar{f}+\nu \Delta_{x} \bar{f} .
$$

$\bullet \nu \geq 0, \kappa \geq 0$.
-Cartesian noise.

Idea of proof

If

$$
d X=U(X, t) d t+\sqrt{2 \nu} M d W
$$

with M a constant matrix and if we set
$A=X^{-1}$ and $P(D)=\operatorname{Tr}\left(M M^{T}(\nabla \otimes \nabla)\right)$, then

$$
f(x, t)=f_{0}(A(x, t)) \exp \left\{\int_{0}^{t} V(X(a, s), s) d s_{\mid a=A(x, t)}\right\}
$$

solves

$$
d f+\left(u \cdot \nabla_{x} f-\nu P(D) f-V(x, t) f\right) d t+\sqrt{2 \nu} \nabla_{x} f M d W=0
$$

Application: generalized relative entropies

Linear Fokker-Planck with potential

$$
\begin{gathered}
\mathcal{D} \rho=\Delta_{x} \rho-\operatorname{div}_{x}(U \rho)+V \rho \\
\partial_{t} f=\mathcal{D} f, \quad \partial_{t} \rho=\mathcal{D} \rho, \quad \rho>0 \\
\partial_{t} \phi+\mathcal{D}^{*} \phi=0, \quad \phi \geq 0 .
\end{gathered}
$$

Michel, Mischer, Perthame: if H is convex, then

$$
\frac{d}{d t} \int H\left(\frac{f}{\rho}\right) \phi \rho d x \leq 0
$$

Stochastic understanding and proof

$$
d X=U d t+\sqrt{2} d W
$$

$$
\psi_{f_{0}}(x, t)=f_{0}(A(x, t)) \exp \left\{\int_{0}^{t} V(X(a, s), s) d s_{\mid a=A(x, t)}\right\} \operatorname{det}\left(\nabla_{x} A\right)(x, t)
$$

Then $\psi=\psi_{f_{0}}$ solves

$$
d \psi+\left(\nabla_{x} \cdot(U \psi)-\Delta_{x} \psi-V \psi\right) d t+\sqrt{2} \nabla_{x} \psi \cdot d W=0
$$

with initial datum $\psi(x, 0)=f_{0}(x)$. Therefore $\mathbb{E}\left(\psi_{f_{0}}\right)$ solves the FokkerPlanck eqn.

Deterministic

$$
\partial_{t} \phi+\mathcal{D}^{*} \phi=0, \quad \phi \geq 0 \Rightarrow
$$

$$
M(a, t)=\phi(X(a, t), t) \exp \left\{\int_{0}^{t} V(X(a, s), s) d s\right\}
$$

is a martingale.

$$
\begin{gathered}
\psi_{\rho_{0}}(x, t) \phi(x, t) H\left(\frac{\psi_{f_{0}}(x, t)}{\psi_{\rho_{0}}(x, t)}\right)= \\
\rho_{0}(A(x, t)) H\left(\frac{f_{0}(A(x, t))}{\rho_{0}(A(x, t))}\right) M(A(x, t), t) \operatorname{det}\left(\nabla_{x} A\right)
\end{gathered}
$$

Consequently we have almost surely

$$
\int \psi_{\rho_{0}}(x, t) H\left(\frac{\psi_{f_{0}}(x, t)}{\psi_{\rho_{0}}(x, t)}\right) \phi(x, t) d x=\int \rho_{0}(a) H\left(\frac{f_{0}(a)}{\rho_{0}(a)}\right) M(a, t) d a
$$

(stochastically passive scalar)(martingale $\circ A)\left(\operatorname{det}\left(\nabla_{x} A\right)\right.$), integrated $d x$

$$
\frac{d}{d t} \mathbb{E}\left\{\int \psi_{\rho_{0}} H\left(\frac{\psi_{f_{0}}}{\psi_{\rho_{0}}}\right) \phi d x\right\}=0
$$

MMP follows from

$$
\mathbb{E}\left(\psi_{\rho_{0}}\right) H\left(\frac{\mathbb{E}\left(\psi_{f_{0}}\right)}{\mathbb{E}\left(\psi_{\rho_{0}}\right)}\right) \leq \mathbb{E}\left\{\psi_{\rho_{0}} H\left(\frac{\psi_{f_{0}}}{\psi_{\rho_{0}}}\right)\right\}
$$

which follows from Jensen for

$$
P f=\mathbb{E}\left(\frac{\psi_{\rho_{0}}}{\mathbb{E} \psi_{\rho_{0}}} f\right)
$$

Variable diffusivity

$$
\begin{gathered}
\mathcal{D} \rho=\nu \partial_{i}\left(a_{i j} \partial_{j} \rho\right)-\operatorname{div}_{x}(U \rho)+V \rho \\
a_{i j}(x, t)=\sigma_{i p}(x, t) \sigma_{j p}(x, t) \\
A(D) \rho=a_{i j} \partial_{i} \partial_{j} \rho \\
u_{j}(x, t)=U_{j}(x, t)-\nu \partial_{i}\left(a_{i j}(x, t)\right) \\
P=V-\operatorname{div}_{x}(U) \\
\mathcal{D} \rho=\nu A(D) \rho-u \cdot \nabla_{x} \rho+P \rho
\end{gathered}
$$

Stochastic Lagrangian Flow

In order to represent solutions of equations with variable diffusivity we need to modify the drift:

$$
v_{j}(x, t)=u_{j}+2 \nu\left(\partial_{k} \sigma_{j p}\right) \sigma_{k p}=U_{j}-\nu\left(\partial_{k} \sigma_{k p}\right) \sigma_{j p}+\nu\left(\partial_{k} \sigma_{j p}\right) \sigma_{k p}
$$

Let $X(a, t)$ be the strong solution of the stochastic differential system

$$
d X_{j}(t)=v_{j}(X, t) d t+\sqrt{2 \nu} \sigma_{j p}(X, t) d W_{p}
$$

with initial data $X(a, 0)=a$. The map X is smooth and the determinant

$$
D(a, t)=\operatorname{det}\left(\partial_{a} X(a, t)\right)
$$

obeys the SDE

$$
\begin{gathered}
d(D(a, t))=[D(a, t)] \times \\
\left\{\left[\left(\operatorname{div}_{x} v\right)(x, t)+2 \nu E(x, t)\right]_{\mid x=X(a, t)} d t+\sqrt{2 \nu}\left(\partial_{k}\left(\sigma_{k p}\right)\right)(x, t)_{\mid X(a, t)} d W_{p}\right\}
\end{gathered}
$$

with

$$
E(x, t)=\sum_{i<j} \sum_{p} \operatorname{det}\left(\partial_{i} \sigma_{j p}\right)_{i j}
$$

The map $A(x, t)$ satisfies the stochastic partial differential system

$$
d A_{j}+\left(u \cdot \nabla_{x} A_{j}-\nu A(D) A_{j}\right) d t+\sqrt{2 \nu}\left(\partial_{k} A_{j}\right) \sigma_{k p} d W_{p}=0
$$

The process $\psi=\psi_{f_{0}}$ given by

$$
\psi(x, t)=f_{0}(A(x, t)) \exp \left\{\int_{0}^{t} P(X(a, s), s) d s_{\mid a=A(x, t)}\right\}
$$

solves

$$
d \psi-(\mathcal{D} \psi) d t+\sqrt{2 \nu} \nabla_{x} \psi \sigma d W=0
$$

with initial datum $\psi(x, 0)=f_{0}(x)$.

If ϕ solves $\partial_{t} \phi+\mathcal{D}^{*} \phi=0$ then

$$
M(a, t)=\phi(X(a, t), t) \operatorname{det}\left(\partial_{a} X(a, t)\right) \exp \left\{\int_{0}^{t} P(X(a, s), s) d s\right\}
$$

is a martingale.

Theorem 10 Let $_{0}$ and ρ_{0} be smooth time independent deterministic func tions. Consider the stochastically passive scalar $\theta_{h_{0}}(x, t)=h_{0}(A(x, t))$ and the process $\psi_{\rho_{0}}$ with initial datum ρ_{0}. Consider also $\phi(x, t)$, a deterministic solution of $\partial_{t} \phi+\mathcal{D}^{*} \phi=0$. Then the random variable

$$
\mathcal{E}(t)=\int_{\mathbb{R}^{n}} \phi(x, t) \psi_{\rho_{0}}(x, t) \theta_{h_{0}}(x, t) d x
$$

is a martingale. Consequently, if H is convex, $\rho=\mathbb{E} \psi_{\rho_{0}}, f=\mathbb{E} \psi_{f_{0}}$, then

$$
\int_{\mathbb{R}^{n}} \phi \rho H\left(\frac{f}{\rho}\right) d x \leq \int_{\mathbb{R}^{n}} \phi(0) \rho H\left(\frac{f_{0}}{\rho_{0}}\right) d x
$$

References

- P. Constantin, Generalized relative entropies and stochastic representation, IMRN (2006) (to appear.)
- P. Constantin, G. Iyer, A stochastic representation of the 3D incompressible NSE, Comm. Pure Appl. Math., in press.
- P. Constantin, G. lyer, Stochastic Lagrangian Transport and Generalized Relative Entropies, CMS to appear (2006).
- P. Constantin, F. Ramos, Inviscid limit for damped driven NSE, in preparation.

Stochastic Representation: Language

$$
\begin{gathered}
f \in B V[0, T] \Leftrightarrow \sup _{\mathcal{P}} \sum_{k} \mid f\left(t_{k+1}-f\left(t_{k}\right) \mid<\infty\right. \\
f \in B V \Rightarrow d f \quad \text { is a Radon measure } \\
\int_{0}^{T} \phi d f \text { usual Stieltjes integral }
\end{gathered}
$$

-Brownian motion is not BV.

$$
\sum_{k}\left|W\left(t_{k+1}\right)-W\left(t_{k}\right)\right|=\infty \quad \text { a.s. }
$$

Stochastic (Itô) Integral

$$
\begin{aligned}
\int_{0}^{t} \phi d W & =\lim _{N \rightarrow \infty} \sum_{k=0}^{N-1} \phi\left(t_{k}\right)\left(W\left(t_{k+1}\right)-W\left(t_{k}\right)\right) \\
& \mathbb{E} \sum_{k}\left(W\left(t_{k+1}\right)-W\left(t_{k}\right)\right)^{2}=T
\end{aligned}
$$

X_{t} continuous $\left(\mathcal{F}_{t}\right)$ adapted. Martingale:

$$
E\left(X_{t} \mid \mathcal{F}_{s}\right)=X_{s}, \text { a.s } t>s
$$

Example:

$$
X_{t}=x+\int_{0}^{t} \phi d W
$$

Semimartingale:

$S_{t}=M_{t}+B_{t},($ Martingale +BV$)$.

$$
\int_{0}^{t} \phi d S=\lim _{N \rightarrow \infty} \sum_{k=0}^{N-1} \phi\left(t_{k}\right)\left(M\left(t_{k+1}\right)-M\left(t_{k}\right)\right)+\int_{0}^{t} \phi d B
$$

Example: SDE

$$
d X=u(X) d t+\sigma(X) d W
$$

is the semimartingale eqn

$$
X_{t}=x_{0}+\int_{0}^{t} \sigma\left(X_{s}\right) d W+\int_{0}^{t} u\left(X_{s}\right) d s
$$

Quadratic Variation

$$
\langle X\rangle_{t}=\lim _{\|\Delta\| \rightarrow 0} \sum_{k=0}^{N-1}\left(X_{t \wedge t_{k+1}}-X_{t \wedge t_{k}}\right)^{2}
$$

Examples:

-Continuous BV process: $\langle X\rangle_{t}=0$.
-Brownian motion: $\langle W\rangle_{t}=t$.

- If X_{t} is a continuous bounded (r. local) martingale then $\langle X\rangle_{t}$ exists, and

$$
X_{t}^{2}-\langle X\rangle_{t}
$$

is a bounded (r. local) martingale.

Joint Quadratic Variation

$$
\langle X, Y\rangle_{t}=\lim _{\|\Delta\| \rightarrow 0} \sum_{k=0}^{N-1}\left(X_{t \wedge t_{k+1}}-X_{t \wedge t_{k}}\right)\left(Y_{t \wedge t_{k+1}}-Y_{t \wedge t_{k}}\right)
$$

- If M is a continuous local martingale and $f \in L^{2}(\langle M\rangle)$ then the Itô integral

$$
\int_{0}^{t} f d M
$$

is a continuous local martingale and

$$
\left\langle\int f d M, N\right\rangle_{t}=\int_{0}^{t} f_{s} d\langle M, N\rangle_{s}
$$

$\forall N$ continuous local martingale.

Itô Formula

- If $F\left(x_{1}, \ldots, x_{n}, t\right)$ is deterministic and smooth and $X=\left(X_{1}, \ldots X_{n}\right)$ is a continuous (vector valued) semimartingale then

$$
\begin{gathered}
F\left(X_{t}, t\right)-F\left(X_{0}, 0\right)= \\
\int_{0}^{t} \partial_{s} F\left(X_{s}, s\right) d s+\int_{0}^{t} \nabla F\left(X_{s}, s\right) \cdot d X_{s}+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2} F\left(X_{s}, s\right)}{\partial x_{i} \partial x_{j}} d\left\langle X_{i}, X_{j}\right\rangle_{s}
\end{gathered}
$$

In differential form:

$$
d(F(X, t))=\left(\partial_{i} F\right) d X_{i}+\left(\frac{1}{2} \frac{\partial^{2} F}{\partial x_{i} \partial x_{j}} d\left\langle X_{i}, X_{j}\right\rangle+\partial_{t} F d t\right)
$$

Generalized Itô -Wentzell- Bismut- Kunita Formula

- If $F(x, t)$ is a continuous C^{2} process and a C^{1} semimartingale, and if g_{t} is a continuous vector-valued predictable process, then the composition $F\left(g_{t}, t\right)$ is a continuous predictable process and

$$
\begin{gathered}
F\left(g_{t}, t\right)-F\left(g_{0}, 0\right)=\int_{0}^{t} \partial_{i} F\left(g_{s}, s\right) d g_{s}^{i}+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2} F\left(g_{s}, s\right)}{\partial x_{i} \partial x_{j}} d\left\langle g_{s}^{i}, g_{s}^{j}\right\rangle \\
+\int_{0}^{t} F\left(g_{s}, d s\right)+\left\langle\int_{0}^{t} \partial_{i} F\left(g_{s}, d s\right), g_{t}^{i}\right\rangle
\end{gathered}
$$

In differential form:

$$
\begin{gathered}
d\left(F\left(g_{t}, t\right)\right)=\partial_{i} F\left(g_{t}, t\right) d g_{t}^{i}+\frac{1}{2} \frac{\partial^{2} F\left(g_{t}, t\right)}{\partial x_{i} \partial x_{j}} d\left\langle g_{t}^{i}, g_{t}^{j}\right\rangle \\
+(d F)\left(g_{t}, t\right)+d\left\langle\int_{0}^{t} \partial_{i} F\left(g_{s}, d s\right), g_{t}^{i}\right\rangle
\end{gathered}
$$

Here

$$
\int F\left(g_{s}, d s\right)=\lim _{N \rightarrow \infty} \sum_{k=0}^{N-1}\left(F\left(g_{t_{k}}, t_{k+1}\right)-F\left(g_{t_{k}}, t_{k}\right)\right)
$$

and

$$
\int \partial_{i} F\left(g_{s}, d s\right)=\lim _{N \rightarrow \infty} \sum_{k=0}^{N-1}\left(\partial_{i} F\left(g_{t_{k}}, t_{k+1}\right)-\partial_{i} F\left(g_{t_{k}}, t_{k}\right)\right)
$$

are usual Itô integrals.

Proof explains it:

$$
\begin{gathered}
F\left(g_{t}, t\right)-F\left(g_{0}, 0\right)=\sum_{k=0}^{N-1}\left\{F\left(g_{t_{k}}, t_{k+1}\right)-F\left(g_{t_{k}}, t_{k}\right)\right\}+ \\
+\sum_{k=0}^{N-1}\left\{F\left(g_{t_{k+1}}, t_{k+1}\right)-F\left(g_{t_{k}}, t_{k+1}\right)\right\}
\end{gathered}
$$

and

$$
\sum_{k=0}^{N-1}\left\{F\left(g_{t_{k+1}}, t_{k+1}\right)-F\left(g_{t_{k}}, t_{k+1}\right)\right\}=I+J+K
$$

with

$$
\begin{gathered}
I=\sum_{k=0}^{N-1}\left\{\partial_{i} F\left(g_{t_{k}}, t_{k+1}\right)-\partial_{i} F\left(g_{t_{k}}, t_{k}\right)\right\}\left(g_{t_{k+1}}^{i}-g_{t_{k}}^{i}\right), \\
J=\sum_{k=0}^{N-1} \partial_{i} F\left(g_{t_{k}}, t_{k}\right)\left(g_{t_{k+1}}^{i}-g_{t_{k}}^{i}\right) \\
K=\frac{1}{2} \sum_{k=0}^{N-1} \frac{\partial^{2} F\left(\xi_{k}, t_{k+1}\right)}{\partial x_{i} \partial x_{j}}\left(g_{t_{k+1}}^{i}-g_{t_{k}}^{i}\right)\left(g_{t_{k+1}}^{j}-g_{t_{k}}^{j}\right)
\end{gathered}
$$

$$
\begin{aligned}
\lim _{\|\Delta\| \rightarrow 0} I= & \left\langle\int \partial_{i} F(g, d s), g^{i}\right\rangle, \lim _{\|\Delta\| \rightarrow 0} J=\int \partial_{i} F(g, s) d g^{i} \\
& \lim _{\|\Delta\| \rightarrow 0} K=\frac{1}{2} \int \frac{\partial^{2} F(g, s)}{\partial x_{i} \partial x_{j}} d\left\langle g^{i}, g^{j}\right\rangle
\end{aligned}
$$

