Supersymmetry and Dark Matter Howard Baer University of Oklahoma

Sevidence for dark matter: overwhelming, and from numerous disparate sources!

Properties: massive, neutral, cold (warm...)

Of particles in the Standard Model (SM), only neutrinos have the right properties: but they constitute hot dark matter, and abundance is known

Dark matter must be some particle state not contained in the SM: NEW PHYSICS NEEDED!

Some dark matter candidates: mass vs. interaction strength plane

Tuesday, March 31, 2009

While some candidates are made up specifically to solve the DM problem, others emerge as part of solutions to long standing problems in particle physics:

Peccei-Quinn solution to strong CP problem: axions

Supersymmetry: at least 3 viable DM candidates: neutralino, gravitino, axino/(axion)

SUSY motivations:

naturalness in quantum field theory (no quadratic divergences)

 means to unification with gravity (supergravity)

gauge coupling unification provided superpartners at TeV scale

precision EM corrections and Higgs mass

oradiative EWSB and the top mass

accommodate baryogenesis: at least 3 ways

Supersymmetric models:

how SUSY breaking is communicated from hidden sector to visible sector

GMSB:solves SUSY flavor problem, very light gravitino: does not naturally yield CDM

AMSB: solves flavor problem, tachyonic sleptons; does not usually yield measured abundance of CDM

SUGRA: 3 candidate DM particles: $\tilde{G}, \tilde{Z}_1 \text{ or } \chi, \tilde{a}/a$

Simplest: mSUGRA or CMSSM

embed MSSM into SUGRA gauge theory

SUSY breaking in simple hidden sector

So parameter space: $m_0, m_{1/2}, A_0 \tan \beta, sign(\mu)$

The WIMP miracle

WIMPs: the WIMP miracle!

- Weakly Interacting Massive Particles
- assume in thermal equil'n in early universe
- Boltzman eq'n:

$$- dn/dt = -3Hn - \langle \sigma v_{rel} \rangle (n^2 - n_0^2)$$

•
$$\Omega h^2 = \frac{s_0}{\rho_c/h^2} \left(\frac{45}{\pi g_*}\right)^{1/2} \frac{x_f}{M_{Pl}} \frac{1}{\langle \sigma v \rangle}$$

- $\sim \frac{0.1 \ pb}{\langle \sigma v \rangle} \sim 0.1 \left(\frac{m_{wimp}}{100 \ GeV} \right)^2$
- thermal relic ⇒ new physics at M_{weak}!

Neutralino is an excellent WIMP candidate!

Calculation of relic density

- ★ Why *R*-parity? natural in SO(10) SUSYGUTS if properly broken, or broken via compactification (Mohapatra, Martin, Kawamura, ···)
- ★ In thermal equilibrium in early universe
- ★ As universe expands and cools, freeze out
- ★ Number density obtained from Boltzmann eq'n
 - $dn/dt = -3Hn \langle \sigma v_{rel} \rangle (n^2 n_0^2)$
 - depends critically on thermally averaged annihilation cross section times velocity
- ★ many thousands of annihilation/co-annihilation diagrams
- ★ several computer codes available
 - DarkSUSY, Micromegas, IsaReD (part of Isajet)

mSUGRA parameter space

HB, Mustafayev, Park, Tata

Beware nonstandard cosmology! Gelmini-Gondolo

Tuesday, March 31, 2009

Search for mSUGRA at LHC

- $\star \tilde{g}\tilde{g}, \tilde{g}\tilde{q}, \tilde{q}\tilde{q}$ production dominant for $m \stackrel{<}{\sim} 1$ TeV
- \star lengthy cascade decays of \tilde{g} \tilde{q} are likely
- \star events characterized by multiple hard jets, isolated and non-isolated leptons es and μ s, and $\not{\!\!\! E}_T$ from \widetilde{Z}_1 or \widetilde{G} or ν s escaping
- ★ many jets are b (displaced vertices due to long B lifetime) and \(\tau\) (1 or 3 charged prongs) jets
- \star one way to classify signatures is according to number of isolated leptons

• E_T + jets

- $1\ell + \not\!\!E_T + jets$
- opposite − sign (OS) 2ℓ+ 𝔅_T + jets
- same − sign (SS)2ℓ+ ₽_T + jets
- $3\ell + \not\!\!E_T + jets$
- 4ℓ+ 𝑘_T + jets
- 5ℓ+ ₽_T+ jets

SM backgrounds to SUSY

- ★ numerous SM processes give same signature as SUSY!
- ★ SM BGs include:

 - $-t\bar{t}$, $b\bar{b}$, $c\bar{c}$
 - -W or Z+ multi-jet production
 - WW , WZ , ZZ production, where $Z \rightarrow \nu \bar{\nu}$ or $\tau \bar{\tau}$
 - * all of above embedded in Isajet, Pythia, Herwig
 - four particle processes: e.g. ttttt, ttbb, etc.
 - WWW, etc.
 - * the $2 \rightarrow n$ for n > 2 processes usually need CalcHEP/Madgraph
 - overlapping events; fake b-jets; fake leptons, etc

Optimize cuts over parameter space

- ★ Cuts and pre-cuts:
- ★ $N_j \ge 2$ (where $p_T(jet) > 40$ GeV and $|\eta(jet)| < 3$
- ★ Grid of cuts for optimized S/B:
 - $-N_j \ge 2 10$

 - $-E_T(j1) > 40 1000 \text{ GeV}$
 - $-E_T(j2) > 40 500 \text{ GeV}$
 - $-S_T > 0 0.2$
 - muon isolation
- $\star S > 10$ events for 100 fb^{-1}
- \star S > 5 \sqrt{B} for optimal set of cuts

Reach of LHC for various signals and 100 fb^-1

Reach of LHC compared to Tevatron and ILC

Reach of LHC, ILC compared to DD/ID WIMP search

mSUGRA : $A_0 = 0$, $\mu > 0$, $\tan\beta = 10$, $m_t = 172.6$ GeV m_{s2} (TeV) 2 10 1.6 1.4 1.200 f. 0.8LC1000 0.60.4ILC500 no REWSB $\partial_z Z$ 4.5 0.51.5 2 2.5 3.5 3 m_o (TeV) Ω(p)=9.3x10⁻⁹ GeV⁻¹cm⁻¹s⁻¹sr⁻¹ $0 < \Omega h^{1} < 0.094$ $\sigma(\hat{Z},p) = 2 \times 10^{-9} pb$ $\Omega(e^{+})=7.1 \times 10^{-9} \text{GeV}^{-1} \text{cm}^{-1} \text{s}^{-1} \text{s}^{-1}$ $0.094 < \Omega h^2 < 0.129$ $\Omega^{mi}(\mu) = 40 \text{ Km}^{-2} \text{yc}^{-1}$ $\Omega(\eta) = 10^{-10} \text{ cm}^{-1} \text{s}^{-1}$ $\Omega(D^{-})=3.0 \times 10^{-12} GeV^{-1} cm^{-2} s^{-1} sc^{-1}$ LEP2 : m_{e/1} < 103.5 GeV $m_b = 110 \text{ GeV}$

mSUGRA : $A_0 = 0$, $\mu > 0$, $\tan\beta = 55$, $m_t = 172.6$ GeV

HB, Park, Tata

DD vs. LHC in mSUGRA: Xenon-100 should cover FP region!

Well-tempered neutralinos

Arkani-Hamed, Delgado, Giudice

Scan over 10 models with and without universality; keep only models with correct relic abundance

Bulk of models asymptote at 10⁻⁸ pb! Accessible to next Xenon-100 run!

Spin-independent Direct Detection

HB, Mustafayev, Park, Tata

If WIMP seen in DD, then mass measurement

Study by Schnee; Green; Drees&Shan shows m(WMP) may be extracted from energy spectrum in DD experiments, for lower range of WIMP masses: crucial input for LHC?

Early search for SUSY at LHC: 0.1-0.5 fb^-1

- Expect $\tilde{g}\tilde{g}$ events to be rich in jets, *b*-jets, isolated ℓ s, τ -jets,....
- These are detectable, rather than inferred objects
- Inferred objects like $\not\!\!E_T$ require knowledge of complete detector performance
 - dead regions
 - "hot" cells
 - cosmic rays
 - calorimeter mis-measurement
- Answer: YES! See HB, Prosper, Summy, PRD77, 055017 (2008)
- electron ID problem? go with multi-muons: HB, Lessa, Summy, arXiv:0809.4719

Reach of LHC for SUSY via SS dimuons and *no* ETMISS

HB, A. Lessa, H. Summy arXiv:0809.4719 (PLB)

Precision sparticle measurements at LHC

- $M_{eff} = E_T + E_T(j1) + \cdots + E_T(j4)$ sets overall $m_{\tilde{g}}, m_{\tilde{q}}$ scale
- $m(\ell \bar{\ell}) < m_{\widetilde{Z}_2} m_{\widetilde{Z}_1}$ mass edge
- m(ll

 distribution shape
- combine $m(\ell \bar{\ell})$ with jets to gain $m(\ell \bar{\ell} j)$ mass edge: info on $m_{\tilde{q}}$
- further mass edges possible e.g. m(ℓℓ̄jj)
- Higgs mass bump $h \to b\bar{b}$ likely visible in $\not\!\!E_T + jets$ events
- in favorable cases, may overconstrain system for a given model
- ★ methodology very p-space dependent
- \star some regions are very difficult *e.g.* HB/FP

Paige, Hinchliffe et al. studies

- examined many model case studies in mSUGRA, GMSB, high $an \beta$...
- classic study: pt.5 of PRD55, 5520 (1997) and PRD62, 015009 (2000)
- $m_0, m_{1/2}, A_0, \tan \beta, sign(\mu) = (100, 300, 0, 2, 1)$ in GeV
- dominant $\tilde{g}\tilde{g}$ production with $\tilde{g} \to q\tilde{q}_L \to qq\tilde{Z}_2 \to q_1q_2\ell_1\tilde{\ell} \to q_1q_2\ell_1\ell_2\tilde{Z}_1$ (string of 2-body decays)
- can reconstruct 4 mass edges; allows one to fit four masses:
 m_{q̃L}, m_{Z̃2}, m_{ℓ̃}, m_{Z̃1} to 3 − 12%
- can also find Higgs h in the SUSY cascade decay events
- if enough sparticle masses measured, can fit to MSSM/SUGRA parameters

Precision SUSY measurements and cosmology

- Find which parameter space choices lead to precision measurements
- Map parameters onto e.g. relic density, DD cross section, ID <sigma.v>
- Solution \Rightarrow Collider
 measurement of $\Omega_{\chi}h^2, \ \sigma(\chi p), \ \langle \sigma \cdot v \rangle, \cdots$

Allanach, Belanger, Boudjema, Pukhov Nojiri, Polesello, Tovey Baltz, Battaglia, Peskin, Wisansky Arnowitt, Dutta, Kamon, ..

Beware: points chosen are SPS1a or accessible to ILC500

The gravitino problem in SUGRA models

- Gravitinos can be produced thermally in early universe
- Gravitino lifetime suppressed
 by M_Pl^-2
- Late decays disrupt
 successful BBN predictions
- Need either m_grav > 5 TeV or T_R<10^5 GeV (but then problems with baryogenesis)

Kawasaki et al; Ellis et al.

Gravitino DM

 $\star m_{\tilde{G}} = F/\sqrt{3}M_* \sim \text{TeV}$ in Supergravity models

- usually G̃ decouples (but see Moroi et al. for BBN constraints)
- if \tilde{G} is LSP, then calculate NLSP abundance as a thermal relic: $\Omega_{NLSP}h^2$
- $\widetilde{Z}_1 \to h \widetilde{G}, \ Z \widetilde{G}, \ \gamma \widetilde{G} \text{ or } \widetilde{\tau}_1 \to \tau \widetilde{G} \text{ possible}$
 - * lifetime $\tau_{NLSP} \sim 10^4 10^8$ sec
 - * constraints from BBN, CMB not too severe
 - * DM relic density is then $\Omega_{\tilde{G}} = \frac{m_{\tilde{G}}}{m_{NLSP}} \Omega_{NLSP} + \Omega_{\tilde{G}}^{TP}(T_R)$
 - Feng, Rajaraman, Su, Takayama; Ellis et al; Buchmuller et al.
- \tilde{G} undetectable via direct/indirect DM searches
- unique collider signatures:
 - * $\tilde{\tau}_1$ =NLSP: stable charged tracks
 - * can collect NLSPs in e.g. water (slepton trapping)
 - * monitor for $NLSP \rightarrow \tilde{G}$ decays

BBN constraints on gravitino LSP: Kohri et al.

Axion dark matter

- ★ PQ solution to strong CP problem in QCD
- \star pseudo-Goldstone boson from PQ breaking at scale $f_a \sim 10^9 10^{12}~{\rm GeV}$
- ★ non-thermally produced via vacuum mis-alignment as cold DM

•
$$m_a \sim \Lambda_{QCD}^2 / f_a \sim 10^{-6} - 10^{-1} eV$$

•
$$\Omega_a h^2 \sim \frac{1}{2} \left[\frac{6 \times 10^{-6} eV}{m_a} \right]^{7/6} h^2$$

- astro bound: stellar cooling $\Rightarrow m_a < 10^{-1} eV$
- a couples to EM field: a − γ − γ coupling (Sikivie)
- axion microwave cavity searches

Axion DM: forms BEC, suppresses small scale structure, gives mechanism for galactic rotation Sikivie, Wang arXiv:0901.1106

Axion microwave cavity seach

- ★ ongoing searches: ADMX experiment
 - Livermore⇒ U Wash.
 - Phase I: probe KSVZ for $m_a \sim 10^{-6} 10^{-5} \ eV$
 - Phase II: probe DFSZ for m_a ∼ 10⁻⁶ − 10⁻⁵ eV
 - beyond Phase II: probe higher values m_a

Axions+ SUSY=> axinos

- axino is spin-1/2, R-odd spartner of axion
 axino mass is model dependent: keV-> GeV
 axino is an EWIMP; coupling suppressed by Peccei-Quinn scale f_a : 10⁹ 10¹² GeV
 good candidate for cold DM
 for review see Covi Kim Kim Roszkowski
- for review, see Covi, Kim, Kim, Roszkowski JHEP 0105 (2001) 033

Non-thermal axino production via NLSP decay

 ${\it { \ensuremath{ \circ } }}$ If \tilde{a} is LSP, then it can be produced via decay of NLSP

$$\circ$$
 e.g. $Z_1 \rightarrow \tilde{a}\gamma \ or \ \tilde{\tau}_a \rightarrow \tilde{a}\tau$

In NLSP lifetime: $10^{-3} - 10^1$ sec: (BBN safe)

axinos inherit NLSP number density

$$\Omega_{\tilde{a}}^{NTP}h^2 = \frac{m_{\tilde{a}}}{m_{\tilde{Z}_1}}\Omega_{\tilde{Z}_1}h^2$$

In NTP axino is warm DM for $m_{\tilde{a}} < 1 - 10$ GeV

0

Thermal production of axinos

Axinos likely never in thermal equilibrium

Can be produced thermally via bremsstrahlung off particles in thermal equilibrium

TP axinos are cold DM for $m_{\tilde{a}} > 100 \text{ keV}$ $\Omega_{\tilde{a}}^{TP}h^2 \simeq 5.5g_s^6 \ln\left(\frac{1.108}{g_s}\right) \left(\frac{10^{11} \text{ GeV}}{f_a/N}\right)^2 \left(\frac{m_{\tilde{a}}}{0.1 \text{ GeV}}\right) \left(\frac{T_R}{10^4 \text{ GeV}}\right)$

SO(10) SUSY GUTs gauge coupling unification matter unification into 16-dim. spinor rep. 16th element contains RHN: see-saw explain anomaly cancellation in MSSM and SU(5)explain R-parity conservation allow for t-b-tau Yukawa unification

SO(10) model parameter space

- $m_{16}, m_{10}, M_D^2, m_{1/2}, A_0, \tan\beta, sign(\mu)$
- Here, M²_D parametrizes splitting of Higgs soft terms at M_{GUT}:

$$m_{H_{u,d}}^2 = m_{10}^2 \mp 2M_D^2$$

★ The Higgs splitting only (HS) method gives better Yukawa unification than full D-term splitting (DT) model for $\mu > 0$ and $m_{16} \stackrel{>}{\sim} 2$ TeV

HB, Kraml, Sekmen, Summy

- Scan over p-space using Isasugra to check for Yukawa unified solutions:
- $R = max(f_t, f_b, f_\tau)/min(f_t, f_b, f_\tau)$

Related work: Blazek, Dermisek, Raby; Wells, Tobe; Dermisek, Raby, Roszkowski, Ruiz; Altmannshofer, Guadagnoli, Raby,Straub

t-b-tau unified solutions

 $m_{16} \sim 10 \ TeV$ $m_{1/2} \ small$

- need $m_{10} \simeq \sqrt{2}m_{16}$
- A₀ ≃ −2m₁₆
- inverted scalar mass hierarchy: Bagger et al.
- split Higgs: $m_{H_u}^2 < m_{H_d}^2$
 - $-m_{\tilde{a},\tilde{\ell}}(1,2) \sim 10 \text{ TeV}$

$$-m_{\tilde{t}_1}, m_A, \mu \sim 1-2$$
 TeV

 $-m_{\tilde{g}} \sim 300 - 500 \text{ GeV}$

Dark matter problem in Yukawa-unified models

neutralino is pure bino-like

relic density too high by factor 10^3-10^5!

DM solution: three components: warm axinos, cold axinos, cold axions!

★ best solution: axion/axino DM instead of neutralino

• each
$$\widetilde{Z}_1 \to \tilde{a}\gamma$$
 so $\Omega_{\tilde{a}}h^2 \sim \frac{m_{\tilde{a}}}{m_{\tilde{Z}_1}}\Omega_{\widetilde{Z}_1}h^2$: \Rightarrow warm DM

- also thermal component depending on T_R: ⇒ CDM
- also axion DM via vacuum mis-alignment

HB, Kraml, Sekmen, Summy JHEP 0803 (2008) 056 HB,Summy PLB666 (2008) 5 HB, Haider, Kraml, Sekmen, Summy arXiv:0812.2693

Can we find Yukawa-unified models with dominant CDM?

- Given $\Omega_{\widetilde{Z}_1}h^2$ and $m_{\widetilde{Z}_1}$ and $\Omega_{\widetilde{a}}^{NTP}h^2$ can calculate $m_{\widetilde{a}}$.
- Given $\Omega_{\tilde{a}}^{TP}h^2$, $m_{\tilde{a}}$ and f_a/N , can calculate re-heat temperature of universe

★ Four cases:

- 1. Take $f_a/N = 10^{11}$ GeV so $\Omega_a h^2 = 0.017$. Bulk of DM must be thermally produced \tilde{a} . Take $\Omega_{\tilde{a}}^{TP} = 0.083$ and $\Omega_{\tilde{a}}^{NTP} = 0.01$
- 2. Take $f_a/N = 4 \times 10^{11}$ GeV so $\Omega_a h^2 = 0.084$. (Bulk of DM is cold axions.) Take $\Omega_{\tilde{a}}^{TP} = \Omega_{\tilde{a}}^{NTP} = 0.013$
- 3. Take $f_a/N = 10^{12}$ GeV and lower mis-align error bar so $\Omega_a h^2 = 0.084$. (Bulk of DM is cold axions.) Take $\Omega_{\tilde{a}}^{TP} = \Omega_{\tilde{a}}^{NTP} = 0.013$
- 4. Take $f_a/N = 10^{12}$ GeV but allow accidental near vacuum alignment so $\Omega_a h^2 \sim 0$. Bulk of DM must be thermally produced axinos. Take $\Omega_{\bar{a}}^{TP} = 0.1$ and $\Omega_{\bar{a}}^{NTP} = 0.01$

Mixed axion/axino cold and warm DM in Yukawa-unified models

Need: 1. large f_a~10^12 GeV 2. solutions C2, C3 with dominant axion CDM 3. solution C4 has accidental vacuum alignment and dominant TP axino CDM

4. Solutions with m16>8 TeV have TR>10^6 GeV

Many pieces of puzzle fit:

PQ solution to strong CP problem

- Solve gravitino problem: m(Grav'ino)~10 TeV
- CDM: dominated by axions, but also cold/ warm axinos
- Allow high enough re-heat 10^6-10^9 GeV for e.g. non-thermal leptogenesis
- Large m16~10 TeV suppresses FCNC, CPV, p-decay
- All within framework of simple SO(10) SUSY GUT

Cross sections/BFs, LHC signatures

HB, Kraml, Sekmen, Summy: JHEP 0810 (2008) 079

Testable consequences:

m(gluino)~350-500 GeV: abundant LHC signatures: early discovery via isolated multileptons plus jets (ETMISS not needed)

LHC dilepton mass edge: 50-90 GeV; no second edge implies bino-like neutralino

high b-jet multiplicity

reconstruct m(gluino) via m(lljj)
possible axion signal at ADMX
no direct/indirect WIMP signals

Conclusions:

- Role of LHC: produce matter states associated with dark matter; decay to stable DM candidate (LHT, UED, SUSY, etc) usually gives ETMISS signature (charged stable NLSP counter-example)
- In case of WIMP dark matter, additional signals from DD/ID of DM will provide complementary information (e.g. WIMP mass?)
- Xenon-100/LUX will soon test FP region of mSUGRA and welltempered neutralino models
- precision measurements may allow collider measurement of relic density, associated quantities
- SuperWIMP, EWIMP DM possible (gravitino, axino/axion)
- SO(10) Yukawa-unified SUSY with axion/axino DM very compelling!