

The Dark Force and Dark Matter

"Shedding Light on Dark Matter" Workshop

work done with Raman Sundrum

Andrey Katz

University of Maryland

The Dark Force and Dark Matter - p. 1/2

- 1. Motivation:experimental hints & possible explanation
- 2. Model of DM:
 - framework
 - DM structure
 - Dark sector masses (example)
- 3. Phenomenology: signals and constraints
- 4. Conclusions

Experimental hints

- PAMELA & ATIC: excess in electron flux
- DAMA/LIBRA: annual modulation, incompatible w/ other direct detection experiment
- INTEGRAL: 511 keV line from the center of the Galaxy

If caused by DM:

- **PAMELA/ATIC:** $\langle \sigma v \rangle_{today} \gg \langle \sigma v \rangle_{EU}$
- DAMA: potentially can be explained by iDM
- INTEGRAL: potentially can be explained by XDM

Unified explanation

Arkani-Hamed, Finkbeiner, Slatyer, Weiner

- weak scale DM -> charged under GeV scale force
- large annihilation cross section from
 Sommerfeld enhancement
- ATIC + PAMELA: $M_{DM} \sim 700 800 \text{ GeV}$
- iDM/XDM splittings: induced radiatively ? higher-dim. operators

Unified explanation - 2

Dark force - Abelian or non-Abelian? Interaction w/ the SM: kinetic mixing

 $\mathcal{L} \supset \epsilon F_d^{\mu\nu} F_{\mu\nu}$:

•
$$\epsilon \leq 10^{-3} \ (g-2)_{\mu}$$

• $\epsilon \gtrsim 10^{-4}$ to explain DAMA

Must have an Abelian component iDM+XDM together - easier w/ non-Abelian, not necessary

 \Rightarrow we will assume Abelian force

Unified explanation - constraints

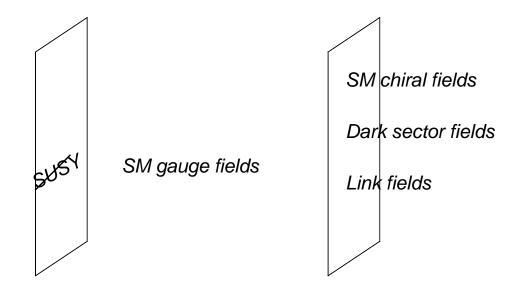
- PAMELA no antiproton excess
- HESS constraints from γ -rays
- no significant π^0 signal

"Leptophilic" DM, SM channels suppressed Motivates: DM neutral under the SM "secluded" DM

 $\chi\chi \to \gamma_D\gamma_D$

If γ_D decays:

 \blacktriangleright no π^0


• no τ , p... due to kinematics

Model building - goals & challenges

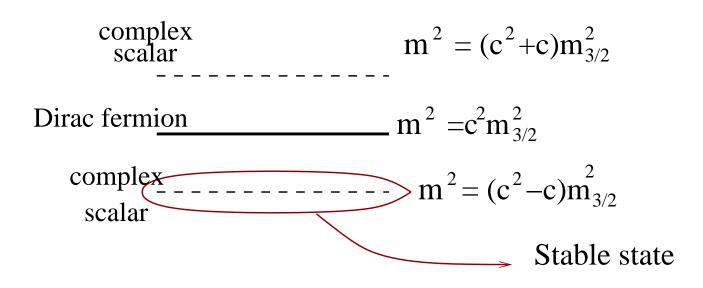
- DM mass: $\mu/B\mu$ type mechanism \sim EW scale
- How does GeV scale naturally emerge?
- Higgsing the dark sector: no massless particles, long-living particles - BBN constraints

Experimental detection – is it different from the "general" picture? $\mu/B\mu$ - generalized Giudice-Masiero mechanism

High scale SUSY-breaking

- SM ĝMSB
- Jark sector sequestered AMSB+

DM: not charged under the SM; sequestered Why 100 GeV scale mass? generalized Giudice-Masiero mechanism: X, \overline{X} - vector-like DM


$$K = |\phi|^2 \left(|X|^2 + |\bar{X}|^2 + c(X\bar{X} + \text{c.c.}) \right), \ \phi \equiv 1 + m_{3/2}\theta^2$$

Rescale $\phi X \to X$:

$$K = |X|^2 + |\bar{X}|^2 + c \frac{\phi^{\dagger}}{\phi} (X\bar{X} + \text{c.c.})$$

Effective $\mu/B\mu$: $\mu = cm_{3/2}, \ B\mu = cm_{3/2}^2$

- avoid tachyons: c > 1
- U(1) broken DM can be splitted
- both iDM & XDM: at least two flavors of DM

(will be) GeV scale sector

We need it to

- supply DM annihilation channels
- enhance $\langle \sigma v \rangle$
 - Dark gauge group: U(1)

Field contest:

 $T(+1), \ \bar{T}(-1), \ S(0)$

Superpotential:

$$W = \lambda T \bar{T} S + \frac{\kappa}{3!} S^3$$

No mass scale at this point

What are the origins of mass?

- 1. Kinetic mixing \Rightarrow effective FI term in the dark sector $m \sim \sqrt{\epsilon}v \sim \gtrsim 1 \text{ GeV}$
- **2.** AMSB $m \sim \frac{m_{3/2}}{16\pi^2} \sim 1 \text{ GeV}$
- 3. non-decoupling effects

Needed: tachyonic masses to break the dark force

No massless particles (including fermions)

Dark sector masses - FI term

FI term:

$$\mathcal{L} \supset \xi_{FI} \int d^4 \theta V \implies \mathcal{L} \supset \xi_{FI} D$$

We develop effective FI term

$$\mathcal{L} \supset \frac{\epsilon}{2} \int d^2 \theta W_D^{\alpha} W_{\alpha Y} + \text{c.c.} \implies \mathcal{L} \supset \epsilon D_D \langle D_Y \rangle$$

- Does not break SUSY
- masses² to \overline{T} positive; to T tachyonic!

•
$$\epsilon \sim 10^{-4} \Rightarrow m \sim \text{GeV}$$

 $\epsilon \sim 10^{-3} \Rightarrow m \sim 5 \text{ GeV}$

Dark sector masses - AMSB

Order:
$$m \sim \frac{m_{3/2}}{16\pi^2} \sim 1 \text{ GeV}$$

One-loop A-terms: $a \propto \beta$

 $m^2 \propto \beta \frac{\partial \gamma}{\partial a}$

Sign: Yukawa, UV free gauge interaction \Rightarrow positive mass squared

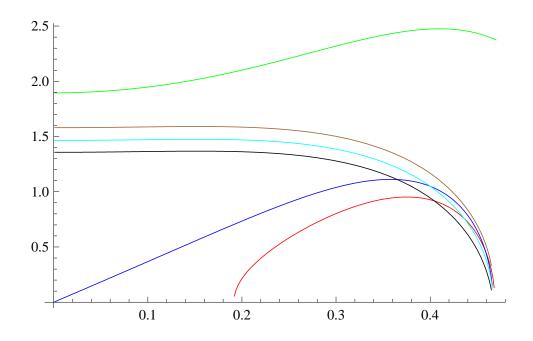
IR free force \Rightarrow tachyonic scalar masses

Effective FI + AMSB: if $\lambda \sim g$ (or smaller), dark U(1) is broken

Dark sector - fermion masses

$FI + AMSB \implies soft masses of T, \overline{T} are not symmetric$

Consider: only *T* condenses $W = \lambda T \overline{T} S$


- \overline{T} and S form Dirac state with mass $\lambda \langle T \rangle$ Need S to give mass to $\psi_{\overline{T}}$
- λ gets Majorana mass from AMSB (and non-decoupling effects)
- ψ_T mass from U(1) breaking, mixes w/ λ All fermions are massive!

Dark sector - boson masses

- dark photon is massive $m_{\gamma} = g\langle T \rangle$
- phase of T is eaten by dark photon
- absolute value of T gets mass $g\langle T \rangle$
- S and \bar{T} mix due to A-terms: two complex scalar states

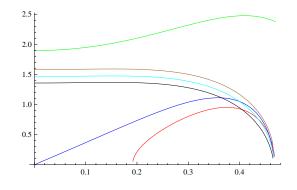
Full mass spectrum

Example:

Values: $\epsilon = 10^{-4}$, tan $\beta = 10$, $g_D = 0.4$, $m_{3/2} = 110$ GeV

Partial summary

• DM has $\gtrsim 100 \text{ GeV}$


- AMSB + FI term break U(1) and SUSY in the dark sector
- the mass spectrum is $\sim 1~{\rm GeV},$ no massless particles

Questions:

- 1. What parts of the spectrum are viable?
- 2. How do we get PAMELA signal?
- 3. How do we get iDM/XDM splittings?

R-parity is still imposed \Rightarrow LSP is stable Hidden sector LSP \Rightarrow coexistent light DM (LDM) The lightest dark fermion is stable! Two possibilities for the lightest dark state: 1. Majorana fermion, $\lambda \& \psi_{\bar{T}}$ mixture 2. Complex scalar, S & T mixture

LDM annihilation

Majorana $\lambda + \psi_{\bar{T}}$ vs. Dirac $\psi_S + \psi_{\bar{T}}$ LDM annihilation cross sections:

- **1.** ϵ^2 & p-wave suppressed, not enough
- 2. LDM Dirac fermion, annihilates into scalars

$$\langle \sigma v \rangle \sim rac{lpha_{\lambda}^2 |\lambda \langle T \rangle|^2}{m_T^4}$$
 large enough

PAMELA/ATIC signal

Preferable region – complex scalar is the lightest particle

Should decay into leptons – PAMELA signal

- I. Assume: ϵ is the *only* contact term with the SM Leading order effect: two-loop decays, ϵ^4 suppression in Γ
- Leads to $\tau \gtrsim 1000$ years

Why is it bad?

- BBN D overproduction
- no natural π^0 suppression

II. Consider more contact terms between dark/visible sector

$$W = \frac{SLH_d\bar{e}}{\Lambda_1} + \frac{SQH_d\bar{d}}{\Lambda_2}$$

Assumption: proportional to the SM Yukawa matrices

Arise from integration out $5 + \overline{5}$. Decays

$$S \rightarrow \mu^+ \mu^-$$

 $S \rightarrow e^+ e^-$ suppressed
 $S \rightarrow q^+ q^-$ dangerous

New contact terms -2

Range for Λ :

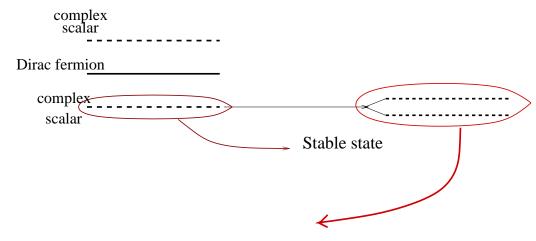
- MFV assumption $\Lambda > 100 \text{ TeV}$
- w/o MFV , Yukawa-like structure ($K \bar{K}$ constraints) $\Lambda \gtrsim 100.000 \text{ TeV}$
- BBN constrains $\Lambda \lesssim 10^{15} {
 m GeV}$

Suppressing $\pi^0\pi^0$ channel:

 $u\bar{u}, d\bar{d}$ - Yukawa suppressed, $s\bar{s}$ - dangerous

$$\frac{\Gamma_{S \to \pi^0 \pi^0}}{\Gamma_{S \to \mu^+ \mu^-}} \sim \frac{1}{16} \left(\frac{\Lambda_1}{\Lambda_2}\right)^2 \left(\frac{m_s}{m_\mu}\right)^2$$

Needed: mild fundamental 2-3 splitting


Colliders and "lepton jets"

Original proposal:

 $\gamma_D \rightarrow l^+ l^$ decay through ϵ : collider lepton jets But we have other mechanism for decays. Lepton jets depend on the particle lifetime Possibilities:

- Interaction roughly proportional to Yukawa \Rightarrow lifetime is too big, no "lepton jets"
- γ_D may be dark stable \Rightarrow lepton jets available
- MFV also allows lepton jets

iDM/XDM splittings

Splitted due to U(1) breaking

Needed: direct coupling to dark Higgses if $\Delta m \sim \mathcal{O}({\rm MeV})$ - Yukawa is to strong, but

$$W \sim \frac{T^2 \bar{X}^2}{M_{DM}} - - \text{enough}$$

iDM/XDM splittings - 2

- two DM flavors: iDM & XDM
- ensure stability of both flavors $\mathbb{Z}_2 \times \mathbb{Z}_2$
- two flavors of singlets A_i
- A_i get masses through GM mechanism
- A_i are odd under $\mathbb{Z}_2 \times \mathbb{Z}_2$

$$W = \eta T \bar{X}_i A_i + \mu_A A^2$$

A integrated out, T gets VEV:

$$\mathcal{L} \supset \frac{\mu}{M_{DM}} \langle T \rangle^2 \bar{X}^2 + \text{c.c.} \Rightarrow \Delta m \sim \frac{T^2}{M_{DM}} \sim \mathcal{O}(\text{MeV})$$

Conclusions

- 1. introduced framework, which can accommodate the "unified picture" of DM
- 2. build explicit model of DM within the "unified picture"
- GeV scale can naturally emerge from sequestering,
 DM mass from GM mechanism
- 4. lepton jets collider signature are not robust, but may emerge in certain parts of the parameter space
- 5. the decaying particle and the dark force carrier can naturally be different particles, further suppressing γ -ray emission