Dark Matter Signals from Dwarf Galaxies

Louie Strigari Stanford University

Shedding Light on Dark Matter University of Maryland April 2, 2009

Based on work with: James Bullock, Rouven Essig, Marla Geha, Manoj Kaplinghat, Greg Martinez, Neelima Sehgal, Josh Simon, Erik Tollerud, Beth Willman, Joe Wolf

Milky Way Circa 2009

<u>Satellite</u>	Year Discovered
LMC	1519
SMC	1519
Sculptor	1937
Fornax	1938
Leo II	1950
Leo I	1950
Ursa Minor	1954
Draco	1954
Carina	1977
Sextans	1990
Sagittarius	1994
Ursa Major I	2005
Willman 1	2005
Ursa Major II	2006
Bootes I	2006
Canes Venatici I	2006
Canes Venatici II	2006
Coma Berenices	2006
Segue 1	2006
Leo IV	2006
Hercules	2006
Bootes II	2007
Leo V	2008
Segue 2 2009	

What is the minimum mass dark matter halo? What is the minimum mass ``galaxy?''

Mapping satellites onto CDM subhalos

Kinematics [e.g. Strigari et al. 2007, 2008, Li et al. 2008, Maccio et al. 2008]

Satellite Masses

■ Derived from spherical-symmetric analysis with variable velocity anisotropy

Up to 8 parameters are free, though all not necessary for the faintest systems

Agrees with results from Lokas 2009, given assumptions

- Estimated total mass-to-light ratios: 10-1000+
- Segue 1: Least luminous known galaxy (Geha et al. 2009)
- Tidal effects important, but not within stellar radius (Penarrubbia et al. 2008)

Tidal Disruption and Rotation

LCDM and the M₃₀₀/M₆₀₀ relation

Extrapolation of abundance matching technique [e.g. Kravtsov et al. 2004] implies the least luminous galaxies live in halos of about 10⁸ Msun

Dark Matter annihilation radiation in the Milky Way

Indirect Detection

If the halo is smooth:

Smooth halo flux = Particle Physics x Astrophysics

 $\mathcal{P}[\langle \sigma v \rangle, M_{\chi}, dN_{\gamma}/dE]$

$$\mathcal{L} = \int_0^{\Delta\Omega} \left\{ \int_{\text{LOS}} \rho^2 [r(\theta, \mathcal{D}, s)] ds \right\} d\Omega,$$

If there is sub-structure:

Total flux = [Smooth halo Flux] x [Substructure Boost]

Annihilation Signals + Halo Kinematics

Combine MCMC code that determines best fitting halo parameters with a DM particle model

Provides robust bounds on the DM properties, accounting for astrophysics

Can either use ``CDM" or ``non-CDM" based models by marginalizing over varying ranges of the inner and outer slopes

Cross Section/Lifetime Bounds

Sommerfeld Effect in dSphs

If sommerfeld effect explains PAMELA, flux detectable within about 1 year with Fermi [Essig, Sehgal, Strigari 2009]

Marginalizes over all CMSSM parameters (SuperBayes, Ruiz de Austri et al. 2006)
Marginalizes over all astrophysical parameters, including Boost

Milky Way/Local Group Mass

Updated applications of Timing argument imply Local Group mass of 5 x 10^{12} Msun and MW mass of 2 x 10^{12} Msun [van der Marel & Guthalakurta 2008, Li & White 2008]

Ground-based proper motions: Scholz & Irwin 1994, Schweitzer et al. 1997, Ibata et al. 1997, Dinescu et al. 2005
Space-based proper motions: Piatek et al. 2002-2007

Satellite proper motions

"Perspective rotation"; see Feast, Thackeray, & Wesselink MNRAS 1961

The core/cusp ``problem"

- CDM predicts NFW/Einasto cuspy profiles
- WDM or some alternatives predict shallower central densities
- Current data from MW dwarf spheroidals are unable to conclusively establish whether these galaxies have cores or cusps

Error projections

Observational Estimates

Hundreds+ Milky Way Satellites?

An empirical correction to the luminosity function, assuming the Via Lactea 1 radial distribution, gives 100-1000 satellites [Tollerud et al. ApJ 2008]
Corrections assumed population of satellites resembles the known population