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• Summary of equilibrium terrace-width distributions, Wigner surmise (WS) from 
RMT        ………………………………(β = 1,2,4 for ensembles with orthogonal, unitary, 
symplectic symmetry) and applications

• Generalization to arbitrary positive β→· (GWS), with no underlying symmetry; 
applications to surface problems, with · related to step repulsion strength

• Fokker-Planck formulation: study of relaxation to equilibrium & way to get GWS
• Apparent narrowing during growth
• Remarkable progress in characterization of island growth by focusing on capture-zone 
distribution – GWS with · = i +1 [or 2(i+1) in 1D] 
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∝ s2 exp[-()s2]

Deduced & drawn by Harald Ibach (¿while on sabbatical at UM, spring 1997?)

Much better than
mean field

∝ sin2(πs/2)



Origin of elastic (dipolar) step repulsions
•Frustration of relaxation of terrace atoms between steps

•Energy/length: U( ) = A/ 2 (Same y for points on two interacting
steps separated by along x ⇒ "instantaneous")

•Metallic surface states ⇒ added oscillatory term in U: (B/ 2) cos(2kF +φ)

•Elastic and entropic repulsions ∝ -2

⇒ universality of 〈 〉-1P( ) vs. s≡ /〈 〉 so P(s;〈 〉) → P(s) scaling

frustrated relaxation ⇒ repulsion
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Wigner Surmise (WS)
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N→∞ ; using Gaussian weighting

Instead, consider N=2, orthogonal symmetry:  

so

Consider all possible MEs 

using

⇒

Wigner’s argument for the surmise, for the orthogonal ensemble

2







Examples of NN spacing distributions with GOE (∑ =1)



RMT & financial data: Cross-correlations of 
price fluctuations of different stocks, using P1(s)

V. Plerou, …, T.  Guhr, and H. E. Stanley, PRE 66 (’02) 066126

∆t =1 day



Headway statistics of buses in Mexican cities, using P2(s)
M. Krbálek & P. Šeba, J. Phys. A 36 (’03) L7; 33 (’00) L229

Headway: time interval ∆t between bus and next bus passing the same point
No timetable for buses in Mexico; independent drivers seek to optimize # riders/fares

P(s) = e-s, Poisson

Puebla, no correlations

cellular automaton model
(modified Nagel–Schreckenberg)

Cuernavaca
Mexico City

P2(s)

P2(s)

Info re when buses pass 
certain points sold to drivers

WS P2(s) better than CA because in CA, correlations only between NNs

data



Modelling gap-size distribution of parked cars using RMT
A.Y. Abul-Magd, Physica A 368 (’06) 536

S. Rawal, G.J. Rodgers, 
Physica A 346 (’05) 621

P2(s)

Unlike random sequential process, Coulomb gas extends repulsion beyond geometric size.
s



What about · other than 1,2,4?
Mixed states of different symmetry; Brody distribution, etc. 

Recent noteworthy illustration: zeroes of Riemann ζ
A. Pimpinelli, J. Phys. A, in press

Zeroes ζ(zn) at 

Conjecture:

s ∝ zm+1 – zm     starting at t

early “time”

late “time”

s

Pζ(s,t) – P2(s)



Wigner Surmise (WS) for TWD (terrace-width distribution)

U( ) = A/ 2
s

WS → GWS



Experiments measuring variances of TWDs

Comparison of variance of P(s) vs. Ã computed with Monte Carlo:
GWS does better, quantitatively & conceptually, than any other approximation

Hailu Gebremariam et al., Phys. Rev. B 69 ('04)125404



Why Look for Fokker-Planck Equation for TWD?

• Justification/derivation of generalized continuum Wigner 
surmise (beyond Heff of Richards et al.) since no 
symmetry basis for · ≠ 1, 2, or 4

• Dynamics: how non-equilibrium TWD (e.g. step bunch) 
evolves toward equilibrium

• Quench or upquench: sudden change of T does not 
change A much but changes Ã (and so ·) considerably

• Connections with other problems, e.g. capture zone 
distribution (& Heston model of econophysics)



Derivation of Fokker-Planck for TWD

• Start with Dyson Coulomb gas/Brownian motion model: 
repulsions ∝ 1/(separation) & parabolic well

• Assume steps beyond nearest neighbors are at integer 
times mean spacing (cf. Gruber-Mullins)
ś = -κs + ρ/s + noise

• Demand self-consistency for width of parabolic 
confining well: κ → 2bρ

Noise sets time scale.
2/t t≡ Γ

1/τ

→ P·(s)



Check of Fokker-Planck with Monte Carlo

〈ℓ〉 = 6
N = 4
Ly = 200

= 〈s2〉 - 〈s〉2 from P(s,t), 
analytic solution of Fokker-
Planck

δ(s-1) Pρ(s)

cleaved → equilibrium TSK model (no adatom carriers)

Best match for 1.4  FP time units = 103 MCS

As good agreement as might expect:
1) Metropolis rather than kinetic MC
2) Just NN step interactions in MC
3) Discrete at early times



Fokker-Planck vs. Monte Carlo: Effect of Step-step Repulsions

( )2 2 /1 te τσ σ −≈ −sat ( )2 2 /1 ..... 1... /te τσ σ τ−− Γ≈ ∝sat

( )Γ ρ ⇒ Γ ∝ ρ2 / 3...... Rayleigh piston..

( )2 2 /1 ..... 1... /te τσ σ τ−− Γ≈ ∝sat

Γ increases with · (for “Rayleigh piston”,  Γ ∝ ·2/3)

A=0, ·=2

τ≈714MCS

A=0.5, ·=4.47

τ ≈ 222MCS

So τ ∝ ·-3/2±?

Qualitative result: τ decreases as repulsion rises



Improved tests: Kinetic MC & SOS model

m=3

m=2

m=1

Ebarrier = Ed + m Ea

T = 520 - 580 K
Ed = 0.9 -1.1 eV; Ea = 0.3 - 0.4 eV

〈 〉 = 4-15, 5 steps, 10000 x Lx

σ/〈 〉

t

( ) 1 exp( / )satt tσ τσ= − −

Fit:

Expect τ ∝ exp(Ebarrier/kBT)

breaking m bonds

Find Ebarrier ≈ 1 Ed + 3 Ea



Behavior of τ in SOS via KMC: Ramp Ed, Ea, T, 〈 〉

Unpublished; please write for preprint!



2 other situations of interest

Step Bunch: initially a delta 
function

Quench or upquench: change from initial ρ0
to ρ, e.g. change in temperature

Final



• Narrower ⇒ effective repulsion that rises 
with flux, higher ·, more Gaussian-like

• Decreased apparent stiffness β

0.1 ML/s

1 ML/s

10 ML/s

Does growth flux (step motion) alter TWD?
Test: no energetic interaction (·=2), 150 ML

~

Unpublished; please write for preprint!



Evolution of Island Structures: Simulations of i=1 
Circular Islands Mulheran & Blackman, PRB 53 (96) 10261

0.05 ML 0.10 ML

0.15 ML 0.20 ML

Estimated size of island based
on Voronoi polygon CZ ∝
actual size of island



Island Size Scaling, stable config i Amar & Family, PRL 74 (95) 2066 

In contrast to Point-Island Rate Eqn for large D/F

i+1 atoms: smallest stable island 
critical nucleus

Dynamic scaling assumption
Bartelt 
& Evans



Scaling During Growth in 1D: Going Beyond Mean-Field 
Rate Eqns. Blackman & Mulheran, PRB 54 (96) 11681

d = 1 ⇒ ∑ = 2(i + 1)
P4(s) fits numerical data at least as well 
as B&M’s complicated theory 
expression (not expressible succinctly)

Symbols denote various D/F & θ

BM theoryi = 1

P4(s)

Distribution of gaps 
between point islands



Theory of CZ size distributions in growth, Mulheran & Robbie, EPL 49(00)617

i = 0

d = 2 ⇒ ∑ = i + 1

i = 1

∑ = 1

M&R theory

∑ = 2

M&R theory

Wigner distribution P∑(s) fits 
much better than M&R theory

Island size distribution not so informative

i = 0 i = 1



Exp’t: Pentacene/SiO2 Pratontop et al.,PRB 69 (04) 165201

Π2·+α0(s) ≈ P·(s)

Gamma func’n

Why Gamma, not Wigner?

CZ behaves better

but Π more skewed



Scale invariance in thin film growth: InAs quantum dots on GaAs(001)
M. Fanfoni et al., PRB 75 (’ 07) xxx

Q dot volume
distribution

AFM, 1.68 ML, 350x350nm2, 500°C

0                         1                         2           3      s

α

0.2

0.6

1.0 Q dot volume
Voronoi areas

Π4.1(s)

P2(s)



Why it works: Phenomenological theory
CZ does “random walk” with 2 competing effects on ds/dt:

1]  Neighboring CZs hinder growth ⇒ external pressure, repulsion B
leads to force –KBs        Also noise η

2]  Non-symmetric confining potential, new island nucleated with 
large size so force stops fluctuations of CZ to tiny values
In Dyson model, logarithmic interaction, so +K (  ) /s

3]  Can argue in 2D that (  ) is i + 1
using critical density ∝ si , # sites visited in lifetime ∝ s1

entropy ∝ - product si+1, & force –∂ (entropy) / ∂s
[Also i + 1 in 3D & 4D; but 2(i + 1) in 1D]

4]  Combine ⇒ Langevin eq. ds/dt = K [(2/d)(i +1)/s - Bs ] + η [d=1,2]

5]  Leads to Fokker-Planck eq. with stationary sol’n P∑(s)
cf. AP, HG, & TLE, Phys. Rev. Lett. 95 (05) 246101

Ń=σnNi = σni+1

σ=D/ 2-d s≡ d

n ∝ 2 ≈ s2/d

prod ∝ s(2/d)(i+1)



Summary (see http://www2.physics.umd.edu/~einstein)
• TWD of vicinals provides physical entrée to intriguing 1D fermion models

& RMT, can connections to many other current physics issues---
universality in fluctuations

• Generalized Wigner surmise (GWS) relevant to problems in many fields, 
with ∑ having physical meaning 

• For TWD, ∑ = 1 + [1 + 4 Aβ/(kBT)2]1/2

• With Fokker-Planck, study relaxation

• Narrowing of TWD due to growth

• Look at distribution of areas of capture zones, rather than island sizes

• CZ well described by GWS P∑(s), characteristic of universal fluctuations, 
with ∑ = (2/d) (i + 1)

~
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