Using Impurities to Tailer Mesporous Metals: A KMC Study of Dealloying

Jonah Erlebacher Johns Hopkins University Department of Materials Science and Engineering Department of Chemical and Biomolecular Engineering

Maryland Hall - Home of Materials Science at JHU

This work is supported by the

U.S. Department of Energy, BES/HFI under grant DE-FG02-05ER15727

Special thanks to:

Anant Mathur, Josh Snyder, Roswitha Zeis (JHU) Yi Ding (Shandong Univ./JHU), Mingwei Chen (Tohoku University) K. Sieradzki (ASU), Dionisios Margetis (UMd)

"Nanoporous" Gold (NPG) Made by Dealloying

An Example Experiment

Materials Design of Precious Metal Fuel Cell Catalysts

Nanoparticles

- High surface area/volume
- Immobilization by physisorption *thermal stability issues*
- No intrinsic in-plane conductivity
- Processing leads to "thick" (>10 microns) catalyst layers

precious metal utilization/waste

Mesoporous Metal Membranes

- High surface area/volume
- Immobilization by epitaxy
- High intrinsic in-plane electron conductivity
- Processing could (does!) lead to thin (100 nm) catalyst layers

Electroless Plating of NPG Leaf to Form Electrocatalytic Nanocomposites

Use a thin porous gold membrane ("leaf") floating on water.

Plating is confined to within the pores, and self-limits

-- an advantage over typical electroless or electrochemical plating To date, we have plated **Pt**, Ni, Co, and **Ag**

Growth Kinetics of Pt-NPGL

Deposition may be controlled to within 0.01 mg/cm² (1 ml) using only room temperature benchtop chemistry. Deposition stops prior to filling of pores. (?!)

HRTEM of Pt-NPGL

Fuel Cell Performance of Pt-NPGL

Pt-NPGL does well – *but can we do better?*

- Can we prevent coarsening?
- Can we increase the surface area/volume?
- Can we ease processing?

Multiscale Complexity of NPG Formation

Electrolyte

- Diffusion Boundary Layers (µm - cm)
- Mechanical Properties of Solid (> mm)
- Surface Diffusion Kinetics (< nm)
- Transport Through Nanochannels (nm - mm)
- Chemical Dissolution Kinetics (< nm)

A Useful Observation

Porosity formation implies the rate-limiting behavior is on the solid, alloy side *diffusion limited dissolution (in electrolyte) would lead to electropolishing*

Fast Interfacial Diffusion

Original Alloy: 33% Gold

Observation: During dealloying, gold atoms move from their original lattice sites

Gold atoms must diffuse along the alloy/electrolyte interface, and fast!

Gold Surface Diffusion : "Electrochemical Annealing"

Surface self-diffusion of fcc metals in electrolyte is 5-6 orders of magnitude faster in electrolyte than in vacuum.

Conclusion: surface diffusion is fast enough to get gold atoms out of pits over experimental timescales. Why? I don't know.

Y. Ding, Y.-J. Kim, J. Erlebacher, ""Nanoporous Gold Leaf: "Ancient Technology"/Advanced Material", Adv. Mat., 16 (2004), 1897.

NPG: The Fundamental Problem

Original Alloy: 33% Gold

EXPECTATION

Gold atoms SHOULD diffuse in a direction Gold atoms DC

so as to

(a) smoothen the surface (capillary action)

or

(b) oppose concentration gradients

Flat surfaces passivated with pure gold

Gold atoms DO diffuse in a direction so as to

OBSERVATION

(a) Allow pores to grow and increase the total surface area

and

(b) Keep the pits from becoming clogged with gold

Highest surface area connected metals known to mankind

NPG: Solution to the Fundamental Problem

CASE 1 Uniform concentration of individual atoms ("adatoms")

CASE 2 Clustering.

Agglomeration of gold atoms to channel walls is due to thermodynamics favoring clustering of adatoms on the alloy/electrolyte interface \rightarrow describable using the formalism of 2-d spinodal decomposition on the interface

J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, "Evolution of nanoporosity in dealloying," Nature 410 (2001), 450.

Qualitative Model of Porosity Evolution in Dealloying

Erlebacher, J., "An Atomistic Description of Dealloying: Porosity Evolution, the Critical Potential, and Rate-Limiting Behavior," J. Electrochem. Soc. **151** (2004), C614

Thermodynamics of the Alloy/Electrolyte Interface I

Or, why gold atoms get out of the way of pits.

- We model the interface as a two-species mixture on the surface of the alloy
 - "Au adatoms" and "electrolyte"
- Examine the free energy of the mixture vs. Au coverage

$$f(C_{Au}) = u - Ts$$
Au-Au bond energy
Au-"electrolyte" bond energy
"electrolyte"-"electrolyte" bond energy

$$f(C_{Au}) = wC_{Au} (1 - C_{Au}) + k_B T \oint C_{Au} \ln C_{Au} + (1 - C_{Au}) \ln (1 - C_{Au}) i$$

Thermodynamics of the Alloy/Electrolyte Interface II

Gold *really* doesn't want to be left as adatoms

- \rightarrow this drives agglomeration and diffusion out of pits
- \rightarrow coarsening and capillary action occur on longer time scales

Kinetics of Diffusion in the Au-Electrolyte Interfacial Region

• Generalized diffusion equation $\frac{\P c}{\P t} = M \frac{\P^2 f}{\P c^2} \tilde{N}^2 c$

• Compare to usual (Fick's Law) Diffusion Eq. $\frac{\P c}{\P t} = D\tilde{N}^2 c$

Behavior leads to a characteristic island spacing – "interfacial spinodal decomposition"

$$J_{S} = -M(C_{Au})(\P_{c}^{2}f\P_{s}C_{Au} - w\P_{s}\P_{s}^{2}C_{Au})$$

Analytic Description of Porosity Evolution

Kinetic Monte Carlo (KMC) Model for Porosity Evolution

- Concentrate on the interface
- "gold atoms" and "silver atoms"
- Allow all atoms to diffuse
- Allow only silver-colored atoms to dissolve
- Correct crystallography (fcc)
- "100-million" atom simulations

Only silver atoms get dissolved into electrolyte

Both silver and gold atoms diffuse

Kinetic Rate Laws for Diffusion and Dissolution

Porosity Evolution: Dissolution >> Surface Diffusion

Predictions

Porosity Evolution: Dissolution >> Surface Diffusion

Mobility of gold atoms is really step mobility

Coarsening of NPG

What is the nature of coarsening?

- Adatoms moving from step to step across terraces?
- Are atoms moving along step edges from facet to facet?

Contribution of n-coordinated atoms to the dissolution flux. Note: no n=3 atoms (adatoms)

Smaller pore sizes will result if step mobility is reduced due to impurities that pin step edges. Effect of Impurities on Coarsening of NPG: 1%

Model: add small % of impurity that likes step edges (i.e., strongly binds to gold)

Ancillary problem: 1% aresenic in brass prevents dealloying

Dealloying "30% Au- 65% Ag- 5% Pt"

Ag, Au are both only moderately miscible with Pt (solubility limit < 10%), with virtually no solubility of Ag, Au in Pt.

Model: $E_b = 0.15 \text{ eV} \text{ Ag-Ag}$, Au-Au, Ag-Au $E_b = 0.25 \text{ eV} \text{ Pt-Pt}$

More Pt

smaller, more stable pores

Dealloying Real 30% Au- 64% Ag- 6% Pt

- Electrochemically annealed in concentrated nitric acid, 24 hrs
- Pore size is < 5 nm!

NPG for comparison:

- as-formed (top)
- 24 hours in nitric acid (bottom)

Conclusions

- KMC simulations give useful insights into porosity evolution
- Pinning of step edges may lead to smaller scale features sizes
- Adding impurities both shrinks pore size and segregates "impurities" to surface

Thanks!

Reality vs. Simulation

Simulated NPG

TEM tomography of NPG (with M. Chen, T. Fujita)

Detailed Morphological Characterization of NPG

Preliminary conclusions:

- NPG really does coarsen self-similarly
- Surface is close to a net "zero-curvature" morphology