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The subject

Physically: this talk concerns relaxation of a crystalline surface
below the roughening temperature:

Surface consists of steps and terraces. Facets form at peaks
and valleys, as surface relaxes to a single flat facet.

Mathematically: Main focus is the 4th-order steepest descent

ht = −
[
γ′(hx)x

]
xx assoc to E =

∫
γ(hx)

where γ is convex but not smooth:

γ(hx) = β|hx |+ 1
3 |hx |3
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Mullins’ viewpoint

Fourth-order PDE model is well-established for use above the
roughening temperature (when surface energy is smooth):

E =
∫

γ(∇h) surface energy

µ = δE
δh = −div

(
∂γ

∂∇h

)
chemical potential

J = −M(∇h)∇µ J = surface current, M = mobility,
ht + divJ = 0 conservation of mass

ht = − [γ′(hx)x ]xx in 1D, if M = 1 (diffusion-limited)

Equilibrium shape has
facets, so energy density
is singular at preferred
slope hx = 0.
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General mobility

Mullins’ argument gives, more generally:

ht = −
{

M(hx)
[
γ′(hx)x

]
x

}
x .

Coarse-graining of step motion law gives

M(hx) =
1

1 + D
ak |hx |

where
D = terrace diffusion constant
k = sticking coefficient at step edge
a = atomic lattice size.

Diffusion-limited setting corresponds to D
ak |hx | � 1.

Robert V. Kohn Courant Institute, NYU Continuum Modeling of Surface Relaxation



Steepest descent

Our 4th-order PDE describes H−1 steepest descent for E .

Use periodic bc. If
∫

f =
∫

g = 0 then

〈f , g〉H−1 = 〈∇∆−1f ,∇∆−1g〉L2

= 〈f ,−∆−1g〉L2 = 〈−∆−1f , g〉L2

When E =
∫

γ(hx) we have ∇H−1E = [γ′(hx)x ]xx , since

d
dt

E [h(x , t)] =

∫
γ′(hx)hxt

= 〈−γ′(hx)x , ht〉L2 = 〈∆γ′(hx)x , ht〉H−1

So
ht = −∇H−1E ⇔ ht = −

[
γ′(hx)x

]
xx
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A numerical scheme

Implicit Euler solves steepest descent ht = −∇E robustly:

hn+1 − hn

∆t
= −∇E(hn+1) ⇐⇒ min

hn+1
E(hn+1) +

‖hn+1 − hn‖2

2∆t

Time-step variational problem in our setting is

min
h

∫ (
β|hx |+

1
3
|hx |3

)
+

1
2∆t

‖h − hn‖2
H−1

Reduces to quadratic programming problem

min
−σ(x)≤hx≤σ(x)

∫
βσ +

1
3
|hx |2σ +

1
2∆t

‖h − hn‖2
H−1

(approximate |hx |2σ by 2nd-order Taylor expnsn around hn).

Use finite differences for spatial approximation, so facet is
clearly defined as set where hx = 0.
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Solutions

E =
∫

β|hx |+ 1
3 |hx |3
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Scaling

hmax(t), for β = 0
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Self-similarity

1−ζζ 1−ζ−1+ζ−1

For “sinusoidal” initial data, profile away from facets is
asymptotically self-similar:

h ∼ hmax(t)φ0(x/ζ(t)) for |x | < ζ(t)

with hmax(t) ∼ H0(1− t/T ) and ζ(t) ∼ ζ0(1− t/T )1/2.

Graphical meaning: scaled profiles are independent of time
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Coming soon: an explanation (including formulas for φ0, H0, ζ0).
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But first, a digression . . .

1 Getting started

2 Scaling and self-similarity

3 Alternative numerical schemes

4 Analysis of self-similarity

5 Is the PDE model correct?
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The competition

Most widely-used method is a spectral Galerkin scheme
(Shenoy, Freund, Ramasubramaniam):

look for h(x , t) =
∑

|k |<N ak (t)eikx

do steepest-descent in this finite-dim’l space

Amounts to a nonlinear ODE for mode amplitudes {ak (t)}:

da/dt =
ik3

2π

∫
sgn(hx)(β + h2

x)e−ikx dx .

Advantages: a) conceptually simple
b) equally easy in 2+1 dimensions

Disadvantages: a) slow convergence in N= # of modes
b) edge of facet isn’t sharply defined

Source of slow convergence in N: h is singular at
facet edge (hx = 0 there, but hxx = ∞).
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Extension of implicit time-stepping to 2+1 dimensions
Problem: Need good numerical scheme for (discrete version of)

min
{∫

β|∇h|+ 1
3 |∇h|3 dx +

‖h − hn‖2

2∆t

}
Can’t use lin progr since |∇h| ≤ σ is not equiv to list of ineq’s.

Solution: Primal-dual (mixed) method. Explain idea by focusing
on simpler problem (from image segmentation):

min
∫
|∇h|+ 1

2 |h − hn|2 dx .

Main steps:

regularize: replace |∇h| by (|∇h|2 + δ)1/2

write EL eqn as a system:
−divξ + (h − hn) = 0
ξ(|∇h|2 + δ)1/2 −∇h = 0

solve for h and ξ using Newton’s method

Key point: method is robust in limit δ → 0.
Robert V. Kohn Courant Institute, NYU Continuum Modeling of Surface Relaxation



Back to self-similarity . . .

1 Getting started

2 Scaling and self-similarity

3 Alternative numerical schemes

4 Analysis of self-similarity

5 Is the PDE model correct?

Robert V. Kohn Courant Institute, NYU Continuum Modeling of Surface Relaxation



Precise formulation of PDE

Analogue of ht = −∇H−1E for non-smooth E :

−ht = element of ∂H−1E(h) of minimal H−1 norm.

Same as solution obtained by regularization, e.g. using

Eδ =

∫
β(h2

x + δ2)1/2 + 1
3 |hx |3 as δ → 0.

∂γ = subdifferential of γ

= {slopes of supporting planes}

γ(z) = β|z|+ 1
3 |z|

3 ⇒ ∂γ(z) =

{
β + z2 z > 0
[−β, β] z = 0
−β − z2 z < 0

∂H−1E(h) = {w : E(g) ≥ E(h) + 〈w , g − h〉H−1}
= {vxxx : v(x) ∈ ∂γ(hx)a.e.}
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The evolution as a free boundary problem

Finally: ht = −vxxx where

off facets: v = sgn(hx)(β + h2
x)

on facets: v = cubic polynomial, |v | ≤ β

at facet edge: v , vx , vxx , vxxx are cont’s

Notes:

off facets we get the expected 4th order PDE
on facets, ht is constant
conditions at facet edge assure continuity of h; they set
both bc for PDE and velocity of facet edge
h is somewhat singular: hx → 0 but hxx →∞ at facet edge
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Understanding self-similarity via formal asymptotics

Recall eqn: ht = −vxxx . Assume “sinusoidal symmetry.” Then h
is odd, v even for |x | < ζ; and h is even, v odd abt facet center.

1−ζζ 1−ζ−1+ζ−1

In central region: expect h(x , t) = hmax(t)φ(x/ζ(t), t) with

hmax(t) = H0(1− t/T ) + higher order terms

ζ(t) = ζ0
√

1− t/T + · · ·
φ(ξ, t) = φ0(ξ) + · · ·

On upper facet: expect v = a(t)(x − 1/2) + b(t)(x − 1/2)3,

a(t) = a0 + · · · , b(t) = b0 + · · ·

Solve to leading order . . .
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The outcome

Leading order profile is

φ0(ξ) =
4
π

∫ ξ

0

√
1− y2 dy =

2
π

(arcsin ξ + ξ
√

1− ξ2)
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On the facet, v = a(t)(x − 1/2) + b(t)(x − 1/2)3. At leading order:
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Understanding self-similarity via PDE
Dynamical systems approach to self-similarity: change to
similarity variables

h(x , t) = H0(1− t/T )φ(y , s), y =
x

ζ0
√

1− t/T
, s =

2√
1− t/T

Key properties:

no loss of generality; s →∞ as t → T ;
h becomes self-similar with profile φ0 if φ ∼ φ0 as s →∞.

To see (linear) stability of self-similar solution, substitute

φ(y , s) = φ0(y) +
1
s
η(y , s)

into evolution equation and linearize in η. This gives

ηs + g
(√

1− y2 ηy

)
yyy

+
1
s
(yηy − 3η) =

4
π

arcsin(y)

with g constant, and bc from linearizing condns at facet edge.
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Stabilization

ηs + g
(√

1− y2 ηy

)
yyy

+
1
s
(yηy − 3η) =

4
π

arcsin(y)

As s →∞, term with 1/s becomes negligible, and η
stabilizes to soln of assoc stationary problem.

Why? Problem is linear and operator has gradient structure.
(Same reason ut −∆u = f stabilizes.) To see gradient
structure: for homogeneous eqn ηs +

(√
1− y2 ηy

)
yyy

= 0,

d
ds

∫
1
2

√
1− y2 η2

y = −
∫ (√

1− y2 ηy

)
y
ηs

=

∫ (√
1− y2 ηy

)
y

(√
1− y2ηy

)
yyy

= −
∫ (√

1− y2 ηy

)2

yy

when the bc are homogeneous.
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Enough mathematics. Now some physics.

1 Getting started

2 Scaling and self-similarity

3 Alternative numerical schemes

4 Analysis of self-similarity

5 Is the PDE model correct?
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Summary thus far:

We’ve discussed a widely-used model for dynamics “below
the roughening temperature.”
Good PDE theory via steepest-descent structure (even in
2D); more detail in 1D (numerics, self-similarity)

But: is this PDE model correct?
Maybe (best argument: regularization)
Maybe not (if the truth is a step-flow model)

Briefly: continuum limit of step dynamics justifies the PDE, but
not the “free bdry condition” at the facet edge.
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Step-flow model

Burton-Cabrera-Frank picture: surface has steps and terraces.
Atoms detach from steps, diffuse along terraces, and attach at
nearby steps.

xxn−1 n

a

Solve diffusion eqn on each terrace. When dust clears we get:

E = c1 ·#steps + c2
∑ 1

(xn+1−xn)2 energy

µi = ∂E
∂xi

chemical potential

Ji = −M µi+1−µi
xi+1−xi

surface current

ẋi = −Ω(Ji+1 − Ji) mass conservation

moreover M is constant if |xn+1 − xn| � diffusion length.

But tracking steps is laborious. We would rather solve a PDE.

For what PDE is the step motion law a numerical scheme?
Robert V. Kohn Courant Institute, NYU Continuum Modeling of Surface Relaxation



Coarse-graining

Assume h(xj(t), t) = ja

self-energy = #steps =
∑

i 1 =
∑ 1

a
∆h
∆x ∆xi → 1

a

∫
|hx |

inter’n energy =
∑ 1

(xi+1−xi )2 =
∑ 1

a3

(
∆h
∆x

)3
∆xi → 1

a3

∫
|hx |3

µi = first varn of E → µ = ± 3
a3 (h2

x)x

Ji = −M µi+1−µi
xi+1−xi

→ J = −Mµx

ẋi = −Ω(Ji+1 − Ji) → ht
hx

= −Ωa Ji+1−Ji
hi+1−hi

= −Ωa Jx
hx

In short: we get the continuum PDE model. (This is why
γ(∇h) = β|∇h|+ 1

3 |∇h|3.)

But the argument isn’t applicable at the facet edge.
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Is the PDE right?

No. The continuum limit of step motion is apparently not the
solution of the continuum steepest-descent model.

Reason 1: why should it be? Coarse-graining does not support
idea that µ is a polynomial in x on the facet.

Reason 2: Recently Margetis, Fok,
Aziz, Stone studied analogous
question in radial setting. They found:

PDE is correct away from the facet, but
Limit of step flow does not equal steepest-descent solution

Should we be surprised? No. Singular
perturbations induce bndry layers. Finite
step-height is a singular perturbation.

Can we resolve the boundary layer at the facet edge?
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Coarse-graining is more interesting in 2D

Focus has been on 1D setting. Was that a good idea?

In favor: Must crawl before learning to walk. Also: approx 1D
ripples are easy to achieve experimentally.

Against: 1D picture may be non-physical. Possibly unstable
due to 2D fluctuations of steps bounding facet. Also, if the avg
slope isn’t exactly 0, the ridges won’t be flat.

Radial case is more physical. Coarse-graining issues are same
as 1D setting. No self-similar asymptotics (yet).

Coarse-graining is richer in 2D (Kohn-Margetis, MMS, 2006)
PDE is 4th order, but anisotropic (not an obvious extension
of 1D or radial case)
Source of anisotropy: directions ‖ and ⊥ to steps are very
different.
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Conclusions

Steepest descent PDE model:

interesting, nonlinear PDE
numerics via implicit time-stepping
self-similar decay in 1D with “sinusoidal” data

Relaxation of crystal surfaces:

continuum modeling still poorly understood
coarse-graining of step flow model is a current challenge
does finite step-size induce “boundary layer” at facet edge?
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