Surface Relaxation versus the Ehrlich-Schwoebel Effect in Thin-Film Growth

Bo Li

Department of Mathematics University of California, San Diego

Research supported in part by DOE and NSF

References

 B. Li and J.-G. Liu, European J. Applied Math, 14, 713-743, 2003.
 B. Li and J.-G. Liu, J. Nonlinear Sci., 14, 429-451, 2004.
 B. Li, SIAM J. Math. Anal., 38, 16-36, 2006.

[4] B. Li, Nonlinerity, 19, 2581-2603, 2006.

OUTLINE

- 1. Introduction
- 2. Continuum Models
- 3. Energy Minimization
- 4. Scaling Laws
- 5. Conclusions

1. Introduction

Microscopic processes in thinfilm epitaxy

The Ehrlich-Schwoebel (ES) barrier (1966, 1969)

Low temperatureMetals and semiconductors

Monatomic Fe chains on Cu(111) vicinal surface, by Jiandong Gao (cf. Phys. Rev. B, 73, 193405, 2006).

Consequences of the ES effect

Uphill current destabilizing nominal surfaces, but stabilizing vicinal surfaces with large slope, preventing step bunching.

The Bales-Zangwill instability.

Kinetic roughening of film surface: 2D to 3D growth, mound formation, etc.

Scaling laws $\langle h(x,t)h(0,t)\rangle = [w(t)]^2 g\left(\frac{|x|}{\lambda(t)}\right)$ $w(t) = L^{\alpha} f(t/L^z)$

Interface width $w(t) \sim t^{\beta}$ Mound lateral size $\lambda(t) \sim t^{n}$ Saturation width $w_{s}(L) \sim L^{\alpha}$ Saturation time $t_{s}(L) \sim L^{z}$

 β : growth exponent

W

 $W_{S}(L)$

- *n*: coarsening exponent
- α : roughness exponent

 $z = \alpha / \beta$: dynamic exponent

 $t_{s}(L)$

Fe(001) /Mg(001)

- (a) Area = 200 nm x 160 nmThickness = 300 nm
- (b) Area = 200 nm x 80 nm Thickness = 50 nm
- (c) Area = 300 nm x 120 nmThickness = 11 nm

Thuermer *et al*., PRL, 75, 1767,1995

• Тор

Fe(001)/Mg(001) film with contours of equal height separated by 1 nm.

Area = 65 nm x 65 nm, thickness = 300 nm.

Bottom

Scan along the marked line in the top view.

Thuermer *et al*., PRL, 75, 1767,1995

2. Continuum Models

h: coarse-grained height • Mass conservation $\partial_{\downarrow}h + \nabla \cdot j = F$ $j_{RE} = (-1)^m M_m \nabla \Delta^{m-1} h$ Surface relaxation m = 2: surface diffusion (Herring-Mullins 1951, 1957) m = 3: Fe(001) homoepitaxy (Stroscio *et al.* 1995) $m \geq 3$: anisotropic surface energy approximation (Stewart-Goldenfeld 1992, Liu-Metiu 1993) $= \begin{cases} \frac{F \nabla h}{|\nabla h|^2} & \text{i} \\ \frac{FS \sigma^2 \nabla h}{1 + \alpha^2 \sigma^2 |\nabla h|^2} \end{cases}$ infinite ES • The ES effect J_{ES} finite ES

14

F $s = |\nabla h| = 1/l$: macroscopic slope σ : adatom diffusion distance Infinite ES barrier • Case 1: $s \ll 1$ and $\sigma \ll l$. $j_{FS} = (F\sigma) \times (\sigma/l) = F\sigma^2 \nabla h$ • Case 2: s >> 1 and $\sigma > l$. $j_{FS} = F\sigma^2 f(\sigma/l)\nabla h$ $f(x) \sim 1/x^2 \Rightarrow j_{FS} \sim (F/s^2)\nabla h$

Derivation (Johnson *et al.*, PRL, 72, 116, 1994)

Finite ES barrier: interpolation!

Infinite ES barrier: Villain's model $\partial_t h = (-1)^{m-1} M_m \Delta^m h - \nabla \cdot \left(\frac{F\nabla h}{|\nabla h|^2}\right)$ $E(h) = \int \left[\frac{M_m}{2} |\partial^m h|^2 - F \log |\nabla h|\right] dx$ Finite ES barrier: the Michigan model $\partial_t h = (-1)^{m-1} M_m \Delta^m h - \nabla \cdot \left(\frac{FS \sigma^2 \nabla h}{1 + \sigma^2 \sigma^2 |\nabla h|^2} \right)$ $E(h) = \int \left[\frac{M_m}{2} \left| \partial^m h \right|^2 - \frac{FS}{2\alpha^2} \log(1 + \alpha^2 \sigma^2 \left| \nabla h \right|^2) \right] dx$ \blacksquare Co-moving frame: $h \rightarrow h - Ft$ Periodical boundary conditions • ``Energy-driven'' system: $\partial_t h = -\delta E(h)$ Notation: $\left|\partial^{m}h\right|^{2} = \begin{cases} |\Delta^{m/2}h|^{2} & m = \text{even} \\ |\nabla\Delta^{(m-1)/2}h|^{2} & m = \text{odd} \end{cases}$

16

Rescale: $h \to \eta h$, $x \to \xi x$, $t \to \zeta t$, $E \to eE$ Infinite ES barrier

$$\xi = \left(\frac{F}{M_m}\right)^{1/2m}, \quad \eta = 1, \quad \zeta = M_m \xi^{2m}, \quad e = \frac{1}{F}$$
$$\partial_t h = (-1)^{m-1} \Delta^m h - \nabla \cdot \left(\frac{\nabla h}{|\nabla h|^2}\right)$$
$$E(h) = \int \left[\frac{1}{2} |\partial^m h|^2 - \log |\nabla h|\right] dx$$

Finite ES barrier

$$\xi = \left(\frac{FS\sigma^2}{M_m}\right)^{1/(2m-2)}, \ \eta = \alpha \sigma \xi, \ \zeta = M_m \xi^{2m}, \ e = \frac{\alpha^2}{FS}$$
$$\partial_t h = (-1)^{m-1} \Delta^m h - \nabla \cdot \left(\frac{\nabla h}{1+|\nabla h|^2}\right)$$
$$E(h) = \int \frac{1}{2} \left[|\partial^m h|^2 - \log(1+|\nabla h|^2) \right] dx$$

Instabilities (Villain 91, Rost-Krug 94, Li-Liu 03) $\partial_t h = \frac{|\nabla h|^2 - 1}{(1 + |\nabla h|^2)^2} \partial_{||}^2 h - \frac{|\nabla h|}{1 + |\nabla h|^2} \kappa - (-1)^{m-1} \Delta^m h_1$ $h = h_0 + \varepsilon h_1 + \varepsilon^2 h_2 + \varepsilon^3 h_3 + \cdots$ $h_0(x) = b \cdot x$

Linear theory

 $\partial_{t} h_{1} = \frac{|b|^{2} - 1}{(1 + |b|^{2})^{2}} \partial_{\parallel}^{2} h_{1} - \frac{1}{1 + |b|^{2}} \partial_{\perp}^{2} h_{1} - (-1)^{m-1} \Delta^{m} h_{1}$ $b = 0; \quad \omega(k) = k^{2} - k^{2m}$

$$[k_c = (\frac{FS\sigma^2}{M_m})^{1/(2m-2)}]$$

 Weakly nonlinear theory rough-smooth-rough pattern (Gyure *et al.* 98, Li-Liu 03)

Numerical solution: surface contours (Li-Liu 03)

20

3. Energy Minimization

``Energy-driven'' roughening and coarsening $\partial_t h = -\delta E(h)$

A-minimizers: λ -periodical profiles of the least energy among all λ -periodical profiles.

A simple scenario

• There exist equilibrium λ_q -minimizers h_q with

 $E(h_N) > \cdots > E(h_n),$ $w(h_N) < \cdots < w(h_n),$ $\lambda_N < \cdots < \lambda_n.$

 The systems stays near such equilibriums, roughening and coarsening to reduce its (effective) energy.

The system saturates near a global minimizer.

Strategies

- Global minimizers: large-system asymptotics
- λ -minimizers
- Relation between the two models

Singularly perturbed energy

infinite ES: $E_{\varepsilon}(h) = \int_{Q} \left[\frac{1}{2}\varepsilon^{2m-2} |\partial^{m}h|^{2} - \log |\nabla h|\right] dx$ finite ES: $E_{\varepsilon}(h) = \int_{Q} \frac{1}{2} \left[\varepsilon^{2m-2} |\partial^{m}h|^{2} - \log(1+|\nabla h|^{2})\right] dx$ $x \rightarrow x/\varepsilon, \quad h \rightarrow h/\varepsilon,$ $\varepsilon = 1/L, \quad L = \text{ linear size of substrate,}$ $Q = (0,1) \times (0,1).$

Global minimization: large-system asymptotics $(\varepsilon \rightarrow 0)$ - Heuristics: approximate global minimizer (m = 2) $1/4j-\delta$ $1/4j+\delta$ $E_{\varepsilon}(h) = \int_{0}^{1} \frac{1}{2} [\varepsilon^{2} |h''|^{2} - \log(1+|h'|^{2})] dx = E_{\varepsilon}(\delta, k, j)$ $E_{\varepsilon}(k,j) = \min_{s} E_{\varepsilon}(\delta,k,j)$ $E_{\varepsilon}(j) = \min E_{\varepsilon}(k, j)$ $k = O(1/j\varepsilon), \quad \delta = O(1/j), \quad E_{\varepsilon}(j) \sim \log(j\varepsilon).$

Findings

• size of transition region $= O(k\varepsilon)$

• minimum energy $\sim -\log k$

Theorem • Global energy-minimizers exist. Moreover, $C_1 + (m-1)\log \varepsilon \le \min_H E_{\varepsilon} \le C_2 + (m-1)\log \varepsilon$. • For any global minimizer $h \in H$, $C_3 \varepsilon^{1-m} \le || \nabla^k h || \le C_4 \varepsilon^{1-m}$ $(0 \le k \le m)$.

Notation

 $H := \text{ the closure of } \left\{ h \in C_{per}^{\infty}(Q) : \int_{Q} h dx = 0 \right\} \text{ in } H^{m}(Q)$ $|| \nabla^{k} h || = \sqrt{\sum_{|\alpha|=k} \int_{Q} |\nabla^{\alpha} h(x)|^{2} dx}$

Singularly perturbed energy: finite ES $E_{\varepsilon}(h) = \int_{Q} \frac{1}{2} [\varepsilon^{2m-2} |\partial^{m}h|^{2} - \log(1+|\nabla h|^{2})] dx$

Proof

Existence by direct methods.
 Upper bound of energy by construction.
 Lower bound of energy by Jensen's inequality min E_ε = E_ε(h) ≥ -¹/₂log(1+ ||∇h ||²)

and upper bound of gradients.

Upper bound of gradients by

$$\delta E_{\varepsilon}(h)h = \int_{Q} \left(\varepsilon^{2m-2} |\partial^{m}h|^{2} - \frac{|\nabla h|^{2}}{1+|\nabla h|^{2}} \right) dx = 0$$

and the Poincare inequality. Lower bound of gradients by $\|\nabla h\|^{2} = -\int_{Q} h \cdot \Delta h dx \leq \|h\| \cdot \|\Delta h\| \leq C_{4} \varepsilon^{1-m} \|h\|,$ $C_{2} + (m-1)\log \varepsilon \geq E_{\varepsilon}(h) \geq -\frac{1}{2}\log(|1+||\nabla h||^{2}),$

and the Poincre inequality.

The Michigan model for a finite ES barrier $E(h) = \int \left[\frac{M_m}{2} |\partial^m h|^2 - \frac{FS}{2\alpha^2} \log(1 + \alpha^2 \sigma^2 |\nabla h|^2)\right] dx$

Corollary

Let *h* be a global minimizer. Then, for L >> 1, min $E \sim -\frac{FS}{\alpha^2} \log \left(\sqrt{\frac{FS \sigma^2}{M_m}} L^{m-1} \right)$, $\sqrt{\frac{1}{L^2}} \int_{(0,L)^2} |\nabla^k h(x)|^2 dx \sim \frac{1}{\alpha} \sqrt{\frac{FS}{M_m}} L^{m-k}$ $(0 \le k \le m).$

λ -minimizers

Theorem

For any integer *j*, there exists a profile h_j such that h_j is an L/j-minimizer, h_j is an equilibrium, for j << L, min $E \sim -\frac{FS}{\alpha^2} \log \left(\sqrt{\frac{FS \sigma^2}{M_m}} \left(\frac{L}{j} \right)^{m-1} \right)$, $\sqrt{\frac{1}{L^2}} \int_{(0,L)^2} |\nabla^k h(x)|^2 dx \sim \frac{1}{\alpha} \sqrt{\frac{FS}{M_m}} \left(\frac{L}{j} \right)^{m-k}$ $(0 \le k \le m).$

From finite to infinite ES barriers

Renormalized energies

$$\widetilde{E}_{\varepsilon}(g) = E_{\varepsilon}\left(\frac{g}{\varepsilon}\right) - (m-1)\log\varepsilon$$

$$\widetilde{E}_{\varepsilon}^{FES}(g) = \int \frac{1}{2} [|\partial^{m}g|^{2} - \log(\varepsilon^{2(m-1)} + |\nabla g|^{2})]dx$$

$$\widetilde{E}^{IES}(g) = \int [\frac{1}{2} |\partial^{m}g|^{2} - \log|\nabla g|]dx$$

Theorem
$$\widetilde{E}_{\varepsilon}^{FES} \xrightarrow{\Gamma} \widetilde{E}^{IES} \quad (\mathcal{E} \to 0)$$

31

 large system
 Image shope

 $\searrow h$ $\frac{\nabla h}{1+|\nabla h|^2} \approx \frac{\nabla h}{|\nabla h|^2}$

 enhancement of the ES effect

4. Scaling Laws

Scaling laws $\langle h(x,t)h(0,t)\rangle = [w(t)]^2 g\left(\frac{|x|}{\lambda(t)}\right)$ $w(t) = L^{\alpha} f(t/L^z)$

Interface width $w(t) \sim t^{\beta}$ Mound lateral size $\lambda(t) \sim t^{n}$ Saturation width $w_{s}(L) \sim L^{\alpha}$ Saturation time $t_{s}(L) \sim L^{z}$

 β : growth exponent

W

 $W_{S}(L)$

- *n*: coarsening exponent
- α : roughness exponent

 $z = \alpha / \beta$: dynamic exponent

 $t_{s}(L)$

Scaling prediction by energy minimization

$$w_{s}(L) \sim w(h_{\min}) \sim \frac{1}{\alpha} \sqrt{\frac{FS}{M_{m}}} L^{m}$$

$$\lambda(t_{s}) \sim t_{s}^{n} \text{ and } \lambda(t_{s}) \sim L \Longrightarrow t_{s} \sim L^{1/n}$$

$$\alpha = m, \quad n = \beta / m, \quad z = 1 / n$$

- Agree with experiments (*m* = 2, 3) and previous theories: Ernst *et al.* 94, Johnson *et al.* 94, Stroscio *et al.* 95, Thuermer *et al.* 95, Rost & Krug 97, Golubovic 97.
- Precise prefector: competition of the two mechanisms.
- Previously known: $\beta = 1/2$ for all *m*. Not predicted by energy minimization.

Rigorous bounds for scaling laws

Finite ES: $\partial_t h = (-1)^{m-1} M_m \Delta^m h - \nabla \cdot \left(\frac{FS \sigma^2 \nabla h}{1 + \alpha^2 \sigma^2 |\nabla h|^2} \right)$ Periodical boundary condition

Theorem

$$w(t) = \sqrt{\frac{1}{L^2}} \int_{(0,L)^2} |h(x)|^2 dx \leq \sqrt{\frac{2FS}{\alpha^2}} t^{1/2}$$

$$\sqrt{\frac{1}{(t-t_0)L^2}} \int_{[t_0,t] \times (0,L)^2} |\partial^k h(x,\tau)|^2 dx d\tau \leq \frac{\sqrt{FS}}{\alpha M_m^{k/(2m)}} t^{(m-k)/(2m)} \quad (1 \leq k \leq m)$$

$$\frac{1}{t-t_0} \int_{t_0}^t E(h(\tau)) d\tau \geq -\frac{FS}{\alpha^2} \log\left(\frac{FS\sigma^2}{M_m^{1/m}} t^{(m-1)/m}\right)$$

Only one-sided bounds
Bounds on coarsening rate not available

Finite ES: $\partial_t h = (-1)^{m-1} \Delta^m h - \nabla \cdot \left(\frac{\nabla h}{1 + |\nabla h|^2} \right)$ Proof

Energy method to bound the interface width and the highest-order gradients

$$\frac{1}{2}\frac{d}{dt}[w(t)]^{2} + \int_{(0,L)^{2}} |\partial^{m}h|^{2} dx = \int_{(0,L)^{2}} \frac{|\nabla h|^{2}}{1 + |\nabla h|^{2}} dx \le L^{2}$$

Bound other gradients by the Cauchy-Schwarz inequality and

Lemma
$$A_k^2 \leq A_{k-p}A_{k+p} \implies A_k^n \leq A_0^{n-k}A_n^k$$

Jensen's inequality for the lower bound of energy
Scaling: put back parameters

5. Conclusions

Accomplishments

- A simple scenario of energy-driven roughening and coarsening: equilibrium λ -minimizers
- Energy minimization
 - large-system asymptotics: no-slope selection
 - $\bullet \lambda$ -minimizers
 - ← □ -convergence: enhanced ES effect

Scaling prediction and bounds: precise prefectors

$$\beta = 1/2, \ \alpha = m, \ n = 1/(2m), \ z = 2m$$

Questions

- Feedback to experiment: measurement of mobility and ES barrier?
- Limitations: gradient order parameters and periodical boundary conditions?
- Application to other models of energy-drive dynamics?

Current and future work

Improve the theory
 Stability of *λ*-minimizers
 Upper bound for the coarsening rate

 approach of Golubovic?
 approach of Kohn-Otto and Kohn-Yan?

 Optimality of bounds
 Scaling crossover

 -log(1+ |∇h|²) = ½(|∇h|² - 1)² - ½ + O(|∇h|⁶)

More effects: up-down asymmetry, downward funneling, elasticity, etc.

Thank you!