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WHAT IS EPITAXIAL GROWTH?

substrate

detachment adatomhop attachment

F

A schematic of the basic processes occurring in epitaxial growth as

viewed in cross-section. The gray atoms are atoms that are part of

an island and the black atoms are adatoms.
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HETEROEPITAXY

• Heteroepitaxial growth occurs when one atomic species grows

on a substrate of another material

• One example is when Germanium is grown on a substrate of

Silicon

• One notable feature of such a system is that the lattice spacing

of the deposited material is different from the substrate. This

difference is called the misfit.

• The mismatch can be tuned by using alloys. For example by

depositing a Si-Ge alloy the mismatch can be varied from 0 to

4 %.

• This gives rise to elastic effects which can destabilize a flat

interface resulting in the formation of mounds.
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ENERGETICS

Germanium on Silicon– Due to elastic interaction
the bottom configuration can have less energy than the top one.
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KINETIC MONTE CARLO (KMC)

• KMC is based on knowing or assuming the important events

and estimating their rates

• Rates are based on transition state theory which gives

R = ω exp(−∆E/kT )

• ∆E = E(transition state) − E(current state)

• ω is the attempt frequency, kT is the thermal energy
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ENERGY DIAGRAM
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TRANSITION RATE APPROXIMATION

• Transition Rate

= ω exp [(Current Energy − Transition Energy)/kT ]

• Transition Rate

≈ ω exp [(Current Energy − Energy with Atom Removed)/kT ]

• ω is the attempt frequency, kT is the thermal energy
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HETEROEPITAXIAL MODEL– Lam, Lee, and Sander (2002)

• We use a solid-on-solid type model with a cubic lattice.

• We consider nearest and next nearest neighbor bonds.

• Elastic effects are modeled using a linear ball and spring model

with springs connecting nearest and next nearest neighbor

atoms.

• W ≡ total elastic energy

• Suppose we wish compute hopping rate of atom p then we will

need to compute:

∆W = W (with atom p) − W (without atom p)

• In most cases ∆W > 0, removing an atom lowers the elastic

energy
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MODEL– continuued

• Hopping Rate is R = ω exp [(−nγ + ∆W + E0)/kT ]

• where n = number of bonds, γ = bond energy,

ω = 6D0/((I + 1)(2I + 1)), D0 and E0 are chosen to match

experimental adatom diffusion

• Hop ≡ movement to site ±i atoms away i chosen at random

from {1, 2, 3, ..., I} (uniformly)

• Effective Deposition rate f = F (I + 1)(2I + 1)/6 where F is

actual deposition rate (atoms/sec)

• Evolution is relatively insensitive to I but larger values I

improve simulation speed.
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CLOSELY RELATED PREVIOUS WORK

• Orr, Kessler, Snyder, and Sander (1992) – KMC 1+1

dimensions

• Ratsch and Zangwill (1993) – KMC 1+1 dimensions

• Ratsch, Smilauer, Vvedensky, and Zangwill (1995) – KMC 2+1

dimensions

• Much,Ahr,Biehl and Kinzel (2002) – off lattice KMC 1+1

dimensions
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OTHER APPROACHES

• Full Continuum (Phase Field, Sharp Interface)

• Semi-Discrete (BCF, Level Set Methods)
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REJECTION-FREE KINETIC MONTE CARLO

• Make a list of rates, Rk, for all atoms

• W =
∑N

k=1
Rk is the total transition rate

• Pk = Rk/W is the hopping probablity

• Use {Pk}
N
k=1

as probability distribution from which pick an

atom which is then allowed to hop

• Update {Pk}
N
k=1

• Repeat
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COMPUTATIONAL BOTTLE NECK

• In principle we need to compute Rk for all atoms

• This entails removing each and every atom, computing the

resulting elastic field, and resulting change in energy

• Elastic interactions can be long ranged

• Consquently computations of heteroepitaxy are very

challenging
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WIDENING THE BOTTLE NECK

• Efficient algorithm for the elastic field based on a

Multigrid-Fourier Method

• Ability to provide local updates to the elastic field when

possible: Principle of energy localization & the expanding box

method

• A reasonably sharp upper bound on Rk without needing an

update on the elastic field allows us to formulate a

rejection-reduced KMC method
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DISCRETE ELASTICITY FORMULATION

Lower Layers of Silicon

Germanium

Top Layer of Silicon

Straight lines indicate springs

Since the interaction matrix for the substrate atoms is time
independent the displacements of the light blue atoms can be
specified in terms of the dark blue atoms in an efficient manner

Consequently the unknowns are the Germanium atoms and the
top row of Silicon (the green and dark blue atoms)
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DISPLACEMENT FIELD

us - displacement of the top row of Silicon atoms from their

equilibrium position.

ug - displacement of Germanium from “compressed” configuration.

b - the force that arises from the compressed configuration.

The Silicon substrate is periodic in the horizontal directions and

semi-infinite in the vertical direction.

The displacements satisfy:





A CT

C B









ug

us



 = b

A and C are sparse matrices whereas B is dense matrix Bus is

similar to a Dirichlet to Neumann map and it can be efficiently

evaluated using FFTs.
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MULTGRID-FOURIER METHOD

Germanium

Substrate Forces

Silicon

Fictitious

All atoms are located on a rectangular grid

Lines are real springs & dotted lines are vanishingly weak springs

All but the top row of substrate are removed
and replaced by equivalent forces

These forces are computed using the Fourier Algorithm
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MULTGRID-FOURIER METHOD

• We use standard V-cycles

• Stopping criteria is: L2 norm of relative residual < 10−2

• 1 V-cycle is usually enough

• Elastic energy changes are accurate to 1%

• CPU time ≈ .1 sec in 1+1 (1024 × 50) and ≈ 1 sec in 2+1

(128 × 128 × 5)

• Other work: Algebraic Multigrid + ABC ( Caflisch and

coworkers )
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LOCAL ELASTIC COMPUTATIONS

• It is desirable to update the displacement field locally in the

region near where an atom was moved

• Local calculations are difficult due to the long range nature of

elastic interactions

• As we shall see elastic interactions are much longer ranging in

the film due to the misfit strain

• We shall descibe a method that can provide very accurate

estimates of energy changes using local calculations
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Continuum Theory

Film

Substrate

Ω = Film + Substrate

∂Ω = Film/Vacuum Interface

χF = characteristic function of the film

W =

∫

Ω

|eij − χF e0

ij |
2dx

eij =strain tensor, e0
ij misfit strain

δW = 0 :

∇2u + 2∇(∇ · u) = 0 x ∈ Ω

τijnj = τ0
ijnj x ∈ ∂Ω
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Approximate Continuum Theory

Substrate

Film T

Ω = Film + Substrate

y = T : Film/Vacuum Interface

ε = misfit

Choose reference configuration

so that e0
ij =





0 0

0 ε





∇2u + 2∇(∇ · u) = 0 x ∈ Ω

Approximation:

h(x) ≈ T, h′(x) � 1

τyy = 0, τxy = εkh′(x) y = T
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Nonlocal Nature of Elastic Energy

                change centered here

T R
ΣR

Original state

∇2u + 2∇(∇ · u) = 0 x ∈ Ω
τyy = 0, τxy = ε∂xh y = T

Change film profile by δh (localized)

∇2w + 2∇(∇ · w) = 0 x ∈ Ω
τyy = 0, τxy = ε∂x(h − δh) y = T

Compute Change in Elastic Energy

∆W = W (u) − W (w)

Nonlocality

∆WR ≡
∫

ΣR

∆wdx

Theorem

∆W = ∆WR + O(εT/R) (Large Error)
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Elastic Energy Localization

                change centered here

T R
ΣR

Original state

∇2u + 2∇(∇ · u) = 0 x ∈ Ω
τyy = 0, τxy = ε∂xh y = T

Change film profile by δh (localized)

∇2v + 2∇(∇ · v) = 0 x ∈ ΣR

τyy = 0, τxy = ε∂x(h − δh) y = T
v = u x ∈ ∂ΣR

Compute ∆w in ΣR

∆WR ≡
∫

ΣR

∆wdx

Theorem - Principle of Energy Localization

∆W = ∆WR + O(1/R2) (Small Error)
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Expanding Box Method

substrate forces

Solve elastic equations with SOR in an expanding region

Use the exterior displacement field for Dirichlet conditions

The max norm of the residual is monitored

Success when ||residual||∞ < tolerance and box is not too big

If local calculation fails we use a full elastic calculation
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Calculation of Energy Changes

• The displacement field is not updated after an atom hops or

after a deposition event

• The adatom hopping rate is assumed not to depend greatly on

changes in the elastic energy. Therefore no updating the

displacement field for adatom motion is performed

• Therefore when attempting to move an atom the displacement

field must be updated
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Calculation of Energy Changes

• One first attempts to update the displacement field with the

expanding box method in a neighborhood of the selected atom.

Say box size is N1

• The atom is then removed and the displacement field is

updated using the expanding box method which forced to

expand to size N1

• If successful, the change in elastic energy in the region of size

N1 is computed

• If N1 is too small, one continues to expand until success. Size

of new region is N2

• One continues the previous calculation expanding to size N2

• The change in elastic energy in the region of size N2 is then

computed
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Calculation of Energy Changes

• If either of the expanding box calculations fail then both

calculations must be replaced by updating the displacement

field in the entire computational domain for both cases. (i.e.

with and without the atom)

• The elastic energy is also must be computed on the entire

domain with and without the atom
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Calculation of Energy Changes

• In the case when both expanding box calculations are

successful we will have updated the displacement field inside

the same domain with the same Dirchlet boundary condtions

at the boundary of the box.

• This the precise set up for the princple of energy localizations

and explains why such an approach could be succesful.

• Careful numerical experiments demonstrate the method works

extremely well.
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A Remark

Suppose we do the following:

• A sucessful expanding box step with size N1

• Remove atom

• A sucessful expanding box step with size N2

• Compute the total elastic energy for both problems in a box of

size N3

Then unless N1 = N2 = N3 the value for the change in elastic

energy will often have large errors.
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REJECTION-REDUCED KMC

• ∆Es < C(n)e(p)

• Change in elastic energy when removing atom p is bounded by

the local energy density of the current configutation at p times

a constant depending on the number of bonds

• This allows one to replace Rk by Rupper
k , an upper bound on

the transition rate using C(n)e(p) for ∆Es

• When an atom is selected the actual transistion rate is

computed. If r < Ractual
k /Rupper

k move is accepted (r = U [0, 1])
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RESULTS
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Germanium deposited on Silicon

T = 600◦ K and D/F = 1.5 × 107, misfit = .04
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RESULTS
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Germanium deposited on Silicon

T = 600◦ K and D/F = 1.5 × 108, misfit = .04
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RESULTS

100 200 300 400 500 600 700 800 900 1000

20

40

60

100 200 300 400 500 600 700 800 900 1000

20

40

60

100 200 300 400 500 600 700 800 900 1000

20

40

60

Annealling, ∼ 108 hops, T = 500◦ K and misfit =.02
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RESULTS
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Annealling, ∼ 108 hops, T = 500◦ K and misfit =.04
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OBSERVATIONS

• As the misfit is increased we observe a direct transition from

layer-by-layer growth to 3D islands with no wetting layer

(Volmer-Weber growth).

• Experimentally this is not observed. Instead it is reported that

if the misfit is not too large many layers of layer-by-layer

growth will occur before 3D islands form (Stranski-Kratsanov

growth).

• Clearly the model is incomplete. One possible missing

ingredient is a more accurate model of the alloy. Perhaps phase

segregation is important (Tu and Tersoff).
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FUTURE PLANS

• Extend method to 2+1 dimensions

• Include intermxing
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D/F = 25,000, Spring Constant = 500, misfit=.045
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D/F = 25,000, Spring Constant = 500, misfit=.045
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D/F = 25,000, Spring Constant = 500, misfit=.045
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D/F = 25,000, Spring Constant = 500, misfit=.045
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“EQUILIBRIUM” SHAPE

D/F = ∞, Spring Const. = 500, misfit=.03. For this misfit a flat
surface is also stable. For D/F = 105 layer-by-layer growth occurs
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RELAXATION

D/F = ∞, Spring Const. = 500, misfit=0. Initial condition:
Equilibrium Shape for misfit=.03 (shown on previous slide).
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INTERMIXING

Joint with Arvind Baskaran and Jason Devita
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Figure 1: Germanium on Silicon - 10 monolayers. 600◦K, 1 mono-

layer per second
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Figure 2: Germanium on Silicon - 16 monolayers. 600◦K, 1 mono-

layer per second
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Figure 3: Germanium on Silicon - 16 monolayers. 600◦K, 1 mono-

layer per second. (Si-Ge bond energies 30% greater than Si-Si or

Ge-Ge bonds)
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Figure 4: 60 % Germanium - 40% Silicon on Silicon- 15 monolayers.

1000◦K, 1 monolayer per second.
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