Nanotechnology

"I found my arms and legs were strongly fastened on each side to the ground"

- It's not just a miniature version of the macroscopic world
- Different physical principles result in the new properties of nanotechnology:
 - Surface-to-volume ratio
 - Stochastic behavior
 - Quantum effects

Fluctuations in Nanoscale Structures *

Ellen D. Williams

O. Bondarchuk, C. Tao, W.C. Cullen, T. Stasevich, J.H. Chen, M. Ishigami, M.S. Fuhrer T.L. Einstein

University of Maryland, College Park

P. Rous, T. Boles

University of Maryland, Baltimore County

*support: NSF-MRSEC, LPS, DCI

Shrinking electronic components to molecular scale

-- Fuhrer/Williams groups collaboration at Maryland, CNT and graphene by M. Ishigami

Outline

• Three parts...

- Model metal-molecule interface
 - C60 rings
 - Modal fluctuations
 - Time constants and amplitudes
 - With respect to the metal support
- Fluctuations and transport
 - * Equal and opposite forces: electron scattering
 - Biased step fluctuations under current flow
 - Surface resistivity and transport noise
- Roughness of a 2-D sheet

 $C_{60}/Ag(111)$

- 400 nm x 400 nm image of clean Ag film
- 200 nm x 200 nm image of partial coverage of C60/Ag/mica at room temperature
- High resolution image: C60 chain decorating a step

-- C. Tao et al, PRB, 73, 125436 (2006)

C₆₀ and Step Motion

- Silver atomic motion at step edge is fast time constant of a microsecond
- Individual C_{60} at step edge may be stationary for 100s of seconds
 - Strong charge transfer in C_{60} binding
- If C60 and Ag motion are correlated, C60 will act as pinning site for Ag step fluctuations

-- C. Tao et al, PRB, **73**, 125436 (2006)

Choose different C60 separations and measure the effect on the Ag step edge variations x(t) in between the C60s.

$$G(t) = \left\langle \left(x(t) - x(0) \right)^2 \right\rangle = \left(\frac{2\Gamma(1 - 1/n)}{\pi} \right) \left(\frac{kT}{\tilde{\beta}} \right)^{\frac{n-1}{n}} \left(a^{n+1} \frac{t}{\tau} \right)^{1/n}$$

Clean Ag steps (no C60): n=4

Interesting measurement time effects: A. Bondarchuk et al, PRB 71 045426 2005

Fluctuation Modes

- Steps fluctuate like strings with all wavelengths allowed by the boundary and/or observation conditions.
- The fluctuation correlations we observe are the combination of all the available wavelengths. $2\pi a$

$$G(t) = \int_{-\infty}^{2\pi} G_q(t) dq \qquad q = 2\pi / \lambda$$

• The overall width of the fluctuations is determined by the the system size $L \sim \lambda_{max}$: $w_{eq}^2 = \left\langle \left(x(t) - \overline{x} \right)^2 \right\rangle = \frac{kTL}{12\,\widetilde{B}}$

-- Jeong&Williams, SSR 34 175 1999

Effective system sizes

- Two step orientations
 - Different β values
- No significant dependence on C60 separation for either!
- Effective system sizes are the same as for steps on clean Ag

-- C. Tao et al, PRB, 73, 125436 (2006)

Circular Ag islands decorated by C_{60} rings

By carefully increasing the C_{60} coverage, we create circular C60 structures

-- C. Tao et al, Nano Letters (2007)

C_{60} Motion with chain

Local motion of C_{60} molecules is evident. Bimodal hops correlate with a C60 "kink" displacement between two favorable underlying Ag sites.

Shape fluctuations

STM image of a Ag island surrounded by a C_{60} ring (line time 0.1 s, 512 lines)

Averaged C_{60} ring shape

Time per image = 52.4 s

Total time = 3458 s

- Analogy to fluctuations of an island bounded by a step
- Define modes of fluctuation

$$r_k(t) = \int r(\theta, t) \exp(ik\theta) d\theta \quad k \in I$$

Total time = 3458 s

Measure radial displacements:

$$g(\theta,t) = R(\theta,t) - \langle R \rangle$$

Angular Fourier transform:

Modal time-correlation function:

$$\left\langle \left| g_k(t+t_0) - g_k(t_o) \right|^2 \right\rangle = \frac{kTR}{2\pi\tilde{\beta}k^2} \left(1 - e^{-2t/\tau_k} \right)$$

*Khare & Einstein PRB 54, 11752 1996

Modal Time Correlation Functions

Fitting individual curves yields A_k and τ_k

$$\left< \left| g_k(t+t_0) - g_k(t_o) \right|^2 \right> = G_k(t) = A_k(1 - e^{-2t/\tau_k})$$

-- C. Tao et al, Nano Letters (2007)

$$\tau_k = \frac{kT}{\Gamma_z \tilde{\beta}} \left(\frac{R}{k}\right)^z$$

z = 4, conserved noise z = 2, non-conserved noise

• $A_k = (0.009 \text{nm})(\text{R}/\text{k}^{\alpha})$, with $\alpha = 1.88$ $\Box \mid_k = (11.5 \text{nm}^{-2}\text{s})(\text{R}/\text{k})^z$, with z = 1.85* z = 2! Non-conserved Noise - not the same as clean Ag (z = 4)

-- C. Tao et al, Nano Letters (2007)

C₆₀ and Ag island edge

C60, R = 12.4 nm

Mode 4: $(A_4)^{1/2} = 0.08 \text{ nm}$ $|_4 = 120 \text{ s}$ Clean Ag, R = 12.4 nm

Mode 4: $(A_4)^{1/2} = 0.009 \text{ nm}$ $|_4 = 0.8 \text{ s}$

Mode 12: $(A_{12})^{1/2} = 0.03 \text{ nm}$ $|_{12} = 12 \text{ s}$ Mode 12: $(A_{12})^{1/2} = 0.001 \text{ nm}$ $|_{12} = 0.016 \text{ s}$

> -- C. Tao et al, PRB, **73**, 125436 (2006) _ A. Bondarchuk et al, PRB 71 045426 2005

• Transmission probability across a molecular bridge similar to tunneling - exponential dependence on width of gap + strong dependence on specific metal configuration at contact point

- Motion of individual metal atoms can be fast >10 6 Hz (example Ag)
- Mode fluctuations will be much slower, and large enough in amplitude (0.01 nm) to significantly affect transmission probability
- Conserved and non-conserved noise modes will contribute distinct frequency characterist $(\xi_s = 1/\tau_k) = \frac{0.10nm}{R} f_k^{-1/2}$
 - silver (conserved)

$$A_k(f_k = 1/\tau_k) = \frac{8x10^{-4}nm^3}{R}f_k^{-1}$$

d C60 (non-conserved)

Line Boundaries and Electrical Transport

-- 20 nm Ag nanowire Synthesis - Murphy group USC STM - Williams group UMD

Fluctuating surface steps affect and are affected by internal scattering of charge carriers from surface/interface

• The effects of interfaces with fluctuations in structure are important when the surface/volume ratio is large or when interfaces are the primarily source of carrier scattering or trapping

P.J. Rous, "Electromigration force at stepped Al Surfaces," Physical Review B59, 7719, 1999.

• Force on diffusing atom: F=ez*E; E = electric field

• Wind force:
$$z^*=n_o L\sigma_{tr}$$

- n_0 = electron density, ~ 0.1 Å⁻³ (58.5 nm⁻³ for Ag)
- $L = \text{mean free path}, \sim 100 \text{ Å} \quad (\sim 60 \text{ nm for Ag})$
- σ_{tr} = transport cross section at E_f ; ~ 1 Å² (~ha~0.07nm² for a step edge)

P.J. Rous et al., Surface Sci. 315, L995, 1994; P.J. Rous, Phys. Rev. B61, 8475 2000

- For metals (e.g. Ag), resistivity is low
- Fa $\sim 10^{-7} eV/unit cell$
- Linear perturbation of Langevin equation for step motion

$$\frac{\partial}{\partial t} - \frac{\Gamma_4 \tilde{\beta}}{k_B T} \frac{\partial^4}{\partial x^4} - \frac{\Gamma_4 F}{k_B T a \parallel a} \frac{\partial^2}{\partial x^2} \bigg| y(x,t) = \eta(x,t)$$

Measure Effects on step fluctuations, x(t). For Ag, the step fluctuations occur via atomic diffusion along the step edge

Weak Force...

• Expect modified fluctuation correlations:

P.Rous et al., in preparation for NJP (2007)

Correlation function with EM - Theory

Ag Thin Film with Bias Current

•

A. Bondarchuk et al., submitted 2007 http://arxiv.org/abs/0704.1852

Comparison with Control

Evaluation of relative chi-squared for fit as a function of the fit parameter τ_{em} .

$$F_{w}^{2} = \frac{kT\tilde{\beta}\tau_{h}}{a\tau_{em}} \longrightarrow \begin{array}{c} \text{Calculate step} \\ \text{stiffness}^{\dagger} \text{ using kink} \\ \text{energy 0.117 eV}^{\ast} \end{array} \xrightarrow{F = -2.7 \times 10^{5} \text{ eV/nm}}_{for J_{nom}} = 4 \times 10^{5} \text{A/cm}^{2}}_{F = -9.6 \times 10^{6} \text{ eV/nm}}_{for J_{nom}} = 1 \times 10^{5} \text{A/cm}^{2}}_{for J_{nom}} = 1 \times 10^{5} \text{A/cm}^{2}_{for J_{nom}} = 1 \times 10^{5} \text{A/cm}^{2}_{for J_{nom}} = 1 \times 10^$$

Forces and effective valence substantially larger than calculated value for isolated Ag adatom on a Ag terrace ($z^* = -19$)

* Akustsu&Akustsu J. Phys. Cond. C 11 6635 1999
* T. Stasevich et al., PRB 71 245414 (2005)

$$\dagger \left(\frac{\tilde{\beta}a_{\perp}^2}{kTa_{\parallel}}\right) = \left(\frac{2}{3}\right)\exp\left(\frac{\varepsilon}{kT}\right)$$

JERSITL

A ARYLAND

Electron scattering at steps/kinks

*P.J. Rous et al., PRB , 7719, 1999 † T.S. Rahman, SS 600 4501 2006 ‡ M. Giesen SS 601 140 2007

- Geometric blocking of current flow at steps increases scattering ~x2*
 - Kink sites may enhance geometric blocking
- Only tangential component of force affects step-edge motion
- Kink sites have enhanced charge density[†]
- Kink sites modify activation barrier for stepedge diffusion‡

Surface Resistivity

• Conservation of momentum requires opposing effect on charge carriers, modifying transport characteristics:

$$\ell_{f} \frac{\partial \rho_{s}}{\partial n_{k}} \leq \frac{-F_{w}}{e \eta j} = (3 \pm 1.5 nm^{3})\rho_{o} \qquad \qquad \ell_{f} = film \quad thickness \\ n_{k} = kink \quad density$$

- For 20 nm scale structures with 1 nm step spacing, $\Delta \rho_s \sim 0.3 \rho$
 - Structural fluctuations will affect surface resistivity, creating frequency signature in transport

Atomically thin-sheet: Graphene

Novel electronic properties:

understanding of fundamental mechanisms in flux trapped charges and morphology both important

Preparation:

Mechanical exfoliation onto SiO2 (Geim, Kim)

Surface segregation on SiC (de Heer)

Device fabrication:

Lithographic fabrication of electrodes onto graphene

Experimental Issues

- How to "find" the device
 - Why the device need to "be found"
 - Conducting substrate usually needed
 - Combing SEM, AFM and STM, we can land tip on 1 nm² area

Experimental Issues

- How to clean graphene
 - PMMA residue remains on carbon part of the device after lift-off
 - Commercial resist remover doesn't work
 - Special cleaning procedure* can remove PMMA residue
 - STM image show atomically clean graphene device

STM images of a graphene device

 $[V_{sample} = 1.1 V \text{ and } I_{tunnel} = 0.3 nA]$

$[V_{sample} = 1.0 \text{ V and } I_{tunnel} = 24 \text{ pA}]$

- Processing residues are completely removed
- Large corrugation
- Hexagonal and triangular patterns apparent

Two Dimensional Morphology of Graphene

Non-contact AFM image in UHV

Oxide-graphene boundary

- $\sigma_{\text{oxide}} = 3.1 \text{ Å and } \sigma_{\text{graphene}} = 1.9 \text{ Å}$
- Graphene 60% smoother than SiO_2

Origin of Graphene Roughness

Non-contact AFM image in UHV

Oxide-graphene boundary

•
$$G(x) = \langle (z(x_0 + x) - z(x_0))^2 \rangle$$

• $\xi_{\text{oxide}}=23 \text{ nm}, \xi_{\text{graphene}}=32 \text{ nm}$

- Morphology defined by the substrate
- Finite graphene "stiffness"

Graphene Corrugation

Physical origins of corrugation:

Model 1:

Intrinsic graphene property

constrained via interaction with

interface

Model 2:

Corrugations determined by

relatively strong interaction with

SiO2

Model 1: Intrinsic morphology

H. Aranda-Espinoza and D. Lavallee Structure factor of flexible membranes Europhys. Lett, 43 pp. 355-359 (1998)

$$F = \frac{1}{2} \kappa \left[\nabla^2 h(x, y) \right]^2 + \frac{1}{2} V h^2(x, y)$$

 κ = bending modulus (rigidity)

$$\kappa = \frac{Et^3}{12(1-\nu^2)} \xrightarrow{\text{Graphene}} = 1.1x10^{-19}J$$

V = quadratic constraining potential

$$\xi \equiv \left(\kappa/V\right)^{1/4}$$
$$\left\langle h(x,y)^2 \right\rangle = \frac{kT}{8(\kappa V)^{1/2}}$$
$$\left\langle \left(h(r) - h(0)\right)^2 \right\rangle \sim r^2$$

 r^2 dependence equivalent to 2H = 2. Experimentally $2H \sim 1$

 Van der Waals type interaction - expand potential V(h) to 2d order around h_o

Model 2: Substrate-determined morphology

Estimated relative energies appear reasonable:

Hamaker coefficients:

SiO₂: 650 x10⁻²¹J graphite: 223 x10⁻²¹J $h_o = 4.2Å$ Adhesion energy ~ 14meV/Å²

$$E_{bend} = \frac{Et^{3}}{24(1-v^{2})}\frac{1}{R^{2}}$$

What is the minimum curvature *R* for which adhesion overcomes bending energy?

$R > 5.5 \text{\AA}$

About the radius of a single walled CNT

• Van der Waals type interaction constrains graphene to substrate shape except for areas of very sharp curvature

Key Observations

- Interface Fluctuations
 - Collective motion (structural modes) of nanometer structures (~70 C₆₀) observed in 1Hz range with amplitude on the order of 0.1 nm - sufficient to perturb transmission probabilities at electrode interfaces
 - Different mechanisms of mode fluctuation yield different frequency signatures (f⁻¹ and f^{-1/2})
- Surface Resistivity
 - Charge carrier scattering off of Ag steps sufficient to bias equilibrium fluctations on time scale of 5 s
 - Surface resistivity due to fluctuating kink structure can be ~10% of bulk resistivity for 10nm nanostructure
- Ultra-thin sheet subject to mechanical constraints (graphene) represents interesting possibilities for coordinating morphology with electrical properties

Experimental Statistical Mechanics at the Nanoscale

