Realistic multi-site multi-component lattice-gas modeling...epitaxial growth of metal films on binary alloy surfacesAu versus Ag on NiAl(110)Ni + Al on NiAl(110)

Overview: Goals, Challenges, Approach, Systems

• Goal: realistic atomistic-level modeling of formation of epitaxial metal nanostructures during deposition on binary alloy surfacesfar-from-equilibrium nanostructures access vast phase-space of morphologies and local compositions for multi-component deposition

• Challenges: binary alloy surfaces can offer multiple adsorption sites and diffusion paths even for isolated adatoms. In addition, realistic modeling requires accurate description of edge diffusion and attachment-detachment processes for all island edge configurations.

• Approach: multi-site lattice-gas modeling with realistic energetics & hopping barriers guided by DFT (ideally sampling adatom interactions at both adsorption sites and transition states). Analysis via KMC.

Focus of this presentation:

Au/NiAl(110) vs. Ag/NiAl(110): similar systems, different structures Ni+Al on NiAl(110): fundamental study of (deviations from) alloy self-growth

Isolated adatoms: adsorption energies & diffusion paths

Au and Ag on NiAl(110):

...both prefer Ni-bridge (Ni-br) site ...isotropic diff.n by diagonal hops between Ni-br and Al-br sites $E_d = 0.28eV$ (Au), 0.27 eV (Ag)

Ni and Al on NiAl(110):

...both prefer Ni-br site

 (which is the wrong site for Ni)
 ...Ni diff.n by diag. hops: E_d=0.40eV
 ...Al anisotropic diff.n: E_d=0.5,0.3eV

Ag(110) & Au(110) on NiAl(110): near-perfect lattice-match

Ag on NiAl(110): rectangular bilayer Ag(110) islands

bilayer Ag(110) islands with elongated growth shapes

Ünal, Qin, Han, Liu, Jing, Layson, Jenks, Evans, Thiel, PRB (2007). Han, Unal, Jing, et al., PRL (2008); PRB **81** (2010) 115462.

Single-site LG modeling: Ag(110) bilayer island formation

Hopping barrier selection: single-site model, geometric islands

Any legitimate choice must satisfy **detailed-balance**.. We will NOT use...

Standard "initial value approximation" (IVA) approach:

 $E_{act} = E_d$ (terrace diffusion barrier) + E_{int} (lateral interactions in initial state)

INSTEAD, we use...

Modified "initial value approximation" (IVA) approach: $E_{act} = E_o(appropriate diff.n barrier) + E_{int}(lateral int. in initial state) where...$ For terrace diff.n, attachment & detachment, $E_o = E_d(terrace diff.n barrier)$ For edge diffusion (where the adatom is at edge before and after hop), $E_o =$ selected to recover barrier along straight horizontal (vertical) edges for hops in the horizontal (vertical) direction $\Rightarrow E_o = E_{eh(ev)} - E_{bv(bh)}$ For interlayer diffusion, difference in E_o for upward and downward hops equals difference in isolated adatom adsorption energies for different layers, and magnitude of E_o also reflects any step edge barrier.

KMC simulation: facile Ag bilayer island formation on NiAl(110)

STM & KMC images of Ag islands on NiAl(110) are 27×19 nm² KMC images: grey = 1st layer; white = 2nd layer Ag adatoms

Han et al., PRL (2008), PRB (2010)

TOP: DEPOSITION OF Ag ON NiAl(110) AT 140K WITH LOW F =0.003BL/SSTM: 0.2BLKMC: 0.1BLKMC: 0.2BLKMC: 10 min later

 STM: 0.14BL
 KMC: 0.07BL
 KMC: 0.14BL
 KMC: 10 min later

 BOTTOM: DEP.N OF Ag ON NiAI(110) AT 130K
 WITH HIGH F = 0.03 BL/S

14th Summer School on Crystal Growth (AIP Conf. Proc. 2010)

Ag vs. Au on NiAl(110): similar metals, different behavior

Ag 140K 25x25 nm²

Ag 200K 100x100 nm² PNAS (2010)

Au on NiAl(110): viable low-energy structures

Au on NiAl(110): viable low-energy structures

Ag vs. Au on NiAl(110): similar metals, different behavior

Ag and Au on NiAl(110): multi-site LG model energetics

Ni and AI on NiAI(110): diffusion & detach/attach kinetics

In addition to terrace diffusion of isolated adatoms, must accurately describe edge diffusion and detachment /reattachment kinetics for a vast number of edge configurations

Ni and AI on NiAl/NiAl(110): General Treatment of Diffusion

Ni and AI on NiAI(110): adatom interaction energies

One adatom at a TS (Ni-Al-br = b, or Ni-top = t) and the other at an adsorption site...

TABLE I: Interactions in eV (attraction > 0) between adatoms with one adatom is at an adsorption site (Ni-br sites 1, 3, ...; Al-br sites 2, 4, ...) and another is at a TS (approximated as a Ni-top site t or Ni-Al bridge site b). See Fig. 2(a).

Ni(b)-Ni(3)	0.25	Al(b)-Al(3)	0.29	Ni(b)-Al(3)	0.71	Al(b)-Ni(3)	0.62	Al(t)-Al(2)	-1.00	Al(t)-Ni(2)	-0.44
Ni(b)-Ni(5)	0.14	Al(b)-Al(5)	0.40	Ni(b)-Al(5)	0.28	Al(b)-Ni(5)	0.24	Al(t)-Al(3)	-12.00	Al(t)-Ni(3)	-6.50
Ni(b)-Ni(6)	0.30	Al(b)-Al(6)	0.45	Ni(b)-Al(6)	0.85	Al(b)-Ni(6)	0.73	Al(t)-Al(4)	0.12	Al(t)-Ni(4)	0.06
Ni(b)-Ni(8)	0.18	Al(b)-Al(8)	0.20	Ni(b)-Al(8)	0.14	Al(b)-Ni(8)	0.18	Al(t)-Al(7)	0.02	Al(t)-Ni(7)	0.01

Ni on NiAl(110): Growth Shapes vs. Equilibrium Shape

Experimental STM images (100 × 100 nm²)

 $F = 3 \times 10^{-3} ML/s$

300 K Deposition

0.12 ML

0.48 ML

0.90 ML

400 K Deposition

Ni on NiAI(110): Formation of 'Dense' Submonolayer Islands

DFT calculations for monolayer binding energy per atom: E_{mb}

 $E_{mb} = 4.79 \text{ eV}$

- Dense overlayer preferred with both Ni-br and Al-br sites populated (cf. Ag, Au: dilute)
- Surface lattice constant for Ni(100):
 0.2489 nm
- Dense Ni adlayer suffers <u>little</u> strain

Ni on NiAl(110): Interlayer Spacing of Submonolayer Islands

STM image of Ni on NiAl(110)

DFT calculations

Ni on NiAl(110): Island Shapes at 300-600 K (KMC vs. Expt.)

Ni on NiAl(110): More details on Ni island nucleation & shapes

ISLAND GROWTH SHAPES

Edge diffusion active along diagonal steps at 300K with barrier of $E_{edge} \sim 0.35 \text{ eV}$. but not along horiz/vert steps

...hence preference for diagonal steps [cf. square islands in metal(100) homoepi]

..why vertical elongation: anistropic corner rounding: easier from diagonal to horiz. (versus vertical) steps

...at higher T, horiz/vert edge diffusion becomes Active & anisotropic corner Rounding gives 6-sided islands Most stable dimer mediating nucleation at low T (i=1)

Effective dimer binding = $(E_{bdiag}=0.34)-(\Delta E_{ads}=0.15)=0.19 \text{ eV}$...not strong enough for i=1 @ 300K $N_{isl}(expt) = 4 \times 10^{-3} \text{ nm}^{-2}$ $N_{isl}(i=1 \text{ KMC}) = 9 \times 10^{-3} \text{ nm}^{-2}$

AI on NiAI(110): Island Shapes at 300 K (KMC vs. Expt.)

STM

Han et al., submitted

Al on NiAl(110)

Expt. monomodal ISD broadens with increasing T

BUT for homogeneous nucleation, monomodal ISD sharpens with increasing T corresponding to Increasing reversibility in island nucleation.

..implies some defect-mediated nuc. at least at 300K

Monotonically decreasing ISD...

implies dominance of defect-mediated nucleation

Ni and AI on NiAI(110): Sequential co-deposition at 300 K

Duguet, Han, Yuen, Jing, Unal, Evans, Thiel, PNAS (2010)

KMC simulations F = 8.8×10^{-3} ML/s, T = 300 K

Ni and AI on NiAI(110): Sequential co-deposition

PNAS (2010)

Al core in [Al-core Ni-ring] islands is robust against extraction of Al aided by peripheral Ni

Ni core in [Ni-core Al-ring] islands is susceptible to extraction of Al aided by peripheral Ni

Ni and AI on NiAI(110): Mixed adlayer thermodynamics

DFT calculations for monolayer binding energy per Al-Ni pair: E_p

E_p = 11.41 eV (perfect order) (correct sites) E_p = 10.30 eV (perfect order) (wrong sites)

- Perfect alloy ordering on correct sites preferred over wrong sites
- •Perfect alloy ordering preferred over separated dense domains of Ni and Al

E_p = 10.04 eV (components separated)

Simultaneous stoichiometric codeposition of Ni+AI on NiAI(110)

300 K 400 K 500 K 600 K

Ag versus Au on NiAl(110):

- . Near perfect lattice-match of fcc(110) unit cell and that of NiAl(110) . Bilayer Ag(110) growth on NiAl(110) mediated by QSE
- . Both Ag and Au can select from a variety of low energy adlayer structures – lower penalty for Au to populate near AI-br sites leads to selection of complex monolayer structures...

Ni/NiAl(110):

- isotropic terrace diffusion; dense Ni(100)-like island structure.
- multi-site LG model describes growth shape transitions + equil.

AI/NiAI(110):

• anis. terrace diff.n; multi-site LG models describe dense irregular islands

Ni+Al/NiAl(110):

- Multi-site LG model used to describe simultaneous and sequential co-deposition of Ni and AI on NiAI(110)
- LG model predicts ring structures for sequential co-deposition and evolution from poor to good alloy ordering from 300K to 600 K.

SUBMONOLAYER ISLAND FORMATION

Beyond-Mean-Field Theory for island size (ISD) & capture zone area (CZD) distributions ISD f(x=s/s_{av}): -zx df/dx + (1-2z)f = growth terms; CZD g(a=A/A_{av}): a dg/da + 2 g = nuc. terms Joint Probability Distribution (JPD) for island sizes and CZ areas P(x,a) satisfies PDE...

>Boundary Conditions for coarse-grained BCF type Step-Dynamics Models...
dn/dt = F + D Δn = 0 with D dn/dx = K(n-n_{eq}) + P δn ...kinetic coefficients K = ?, P = ?

Step edge diffusion current: J = J_{equil}(Mullins) + J_{nonequil}needs rigorous derivation

UNSTABLE MULTILAYER GROWTH (MOUNDING DUE TO ES BARRIER)

Coarse-graining of step-dynamics models to obtain continuum PDE

d/dt h(x, t) = F - d/dx J where J = non-equilibrium surface diffusion current = ?

Mound coarsening dynamics: deterministic vs. stochastic evolution

Deviations from mean-field nucleation in higher layers