Dissolutive Wetting: What Controls Spreading? James A. Warren, NIST Daniel Wheeler, NIST William Boettinger, NIST

> Modeling the early stages of reactive wetting, Daniel Wheeler, James A. Warren and William J. Boettinger, PRE (accepted, finally!) 2010

Outline

- Motivation
- Methods, Limitations of prior efforts
- Hydrodynamics, Low Ohnesorge Number flow
- Numerics
- Thick interfaces and intitial conditions
- New metrics of spreading

Good old Wetting

Surface energies, need: γ_{LI} γ_{SI} γ_{LS}

Background: Walls in PF

Solder Joints

"Surface Mount - Gull Wing"

"Surface Mount - Leadless"

"Through Hole"

Reactive Wetting

 $\gamma_{SP}(t)$

product

Dissolutive and compound-forming wetting

VLS Growth (NWU Collab)

Nanowirephotonics.com

Science 5/4/07 Kodambaka et al.

Observations

- Most of the spreading happened in <1 ms
- Prior efforts looked at diffusion controlled growth with hydrodynamics *slaved* to the TJ motion
- What is the proper description of the system state after 5 sec?

Experimental Variations

Slow – lower temperature

Saiz and Tomsia

Fast – higher temperature

Ridging Effects

Surface must be flat for fast spreading

Our model may help to understand this phenomenon in the future, but requires a really large simulation

Ridge retards spreading

Chatain and Carter, Nature Materials 2004

Viscous Dissipation

S 0.65 0.60 0.55 0.50 0.45 0.40 (a) 0.35 0.30 0.25 0.20 0.15 0.10 0.05 М

(b)

Small viscous drops using phase field method, Villanueva et al.

$$t_c = \frac{R\mu}{\gamma} = 1 \times 10^{-6} \mathrm{s}^{\mathsf{C}}$$

Cannot be correct timescale for mm sized drops

National Institute of Standards and Technology U.S. Department of Commerce

What about inertial effects?

2 Approaches

$$\phi_s + \phi_l + \phi_v = 1$$

 ϕ_s, ϕ_l, u_i, P
 $R = 1 \times 10^{-8} \mathrm{m}$
 $\delta = 1 \times 10^{-9} \mathrm{m}$
viscous, three phase fields

- No special algorithms
- Fundamental
- Based on thermo (not ad-hoc)
- nano? -- micro -- macro?

incompressible, pure phase field Villanueva

Inertial, 1 phase field
$$\phi_s, u_i,
ho$$

 $R = 1 imes 10^{-6} ext{m}$
 $\delta = 1 imes 10^{-7} ext{m}$

compressible, van der Waals + phase field

Wheeler

Outline

- Motivation and Introduction
- Phase Field Method intro/Fundamentals
- Thermodynamic derivation
- Numerical approach (FiPy digression)
- Results
- Conclusions

Phase Field Method

Derive from fundamental thermodynamics

Step 1: write down the free energy $f\left(\phi,T\right) = L \frac{T_M - T}{T_M} \left(1 - p\left(\phi\right)\right) + Wg\left(\phi\right)$

Dendrites

Step 2: write down the functional $F = \int_{V} \left[f(\phi, T) + \frac{\epsilon^2}{2} |\nabla \phi|^2 \right] dV$

 $\begin{array}{l} \text{Step 3: minimize}\,F\\ \frac{\partial\phi}{\partial t} = -M_{\phi}\frac{\delta F}{\delta\phi} \end{array}$

Write down the laws of nature

• Mass is conserved

 $\frac{D\rho}{Dt} = -\rho\nabla\cdot\mathbf{v} \qquad \frac{D\rho_i}{Dt} = -\rho_i\nabla\cdot\mathbf{v} - \nabla\cdot\mathbf{J_i}$

• Momentum is conserved

 $\rho \frac{D\mathbf{v}}{Dt} = \nabla \cdot \boldsymbol{\sigma}$

AND FLUXES

Assume a non- $S = \int dV s^{NC}$ classical entropy $s^{NC} = s(u,\phi,\rho_i) - \frac{1}{2} \left[\epsilon_{\phi} \Gamma^2(\nabla\phi) + \epsilon_i |\nabla\rho_i|^2 \right], \quad \xi = \frac{\partial\Gamma}{\partial\nabla\phi}$ SOLID - FLUID PHASE FIELD WHERE THE FLUID CAN UNDERGO A LIQUID-VAPOR TRANSITION (VAN DER WAALS) $s_{\text{prod}} = \mathbf{J}_e \cdot \nabla \frac{1}{T} - \mathbf{J}_i \cdot \nabla \left(\frac{\bar{\mu}_i}{T}\right)^{\text{NC}} + \frac{\tau}{T} : \nabla \mathbf{v} + \frac{D\phi}{Dt} \frac{\delta S}{\delta \phi}$

Turn the Crank: Dynamics

$$s_{\text{prod}} = \mathbf{J}_{e} \cdot \nabla \frac{1}{T} - \mathbf{J}_{i} \cdot \nabla \left(\frac{\bar{\mu}_{i}}{T}\right)^{\text{NC}} + \frac{\tau}{T} : \nabla \mathbf{v} + \frac{D\phi}{Dt} \frac{\delta S}{\delta \phi}$$

$$\frac{D\phi_{k}}{Dt} = M_{\phi_{k}} \frac{\delta S}{\delta \phi_{k}} \qquad \frac{\delta S}{\delta \phi} = \frac{\partial s}{\partial \phi} + \epsilon_{\phi} \nabla \cdot (\Gamma \xi)$$

$$\left(\frac{\bar{\mu}_{i}}{T}\right)^{\text{NC}} = \frac{\mu_{i} - \mu_{n}}{T} - \epsilon_{i} \nabla^{2} \rho_{i} + \epsilon_{n} \nabla^{2} \rho_{n}$$

$$\mathbf{J}_{i\neq n} = -M_{i} \nabla \left[\frac{\mu_{i} - \mu_{n}}{T} - \epsilon_{i} \nabla^{2} \rho_{i} + \epsilon_{n} \nabla^{2} \rho_{n}\right]$$

$$\mathbf{J}_{e} = K \nabla \frac{1}{T}$$

Still need $s(\phi, \rho)$

 $\tau:\nabla\mathbf{v}$ Last Term $\tau = \sigma + \left| P - T\epsilon_i \left(\rho_i \nabla^2 \rho_i + \frac{1}{2} |\nabla \rho_i|^2 \right) - T \frac{\epsilon_\phi}{2} |\nabla \phi|^2 \right| I$ $+ T\epsilon_i \nabla \rho_i \otimes \nabla \rho_i + T\epsilon_\phi \nabla \phi \otimes \nabla \phi,$

 $\tau = \mu \left(\nabla \mathbf{v} + (\nabla \mathbf{v})^T \right) + \left(K - \frac{2}{3} \mu \right) I \nabla \cdot \mathbf{v}$

Non-Classical Newtonian Fluid

Outline

- Motivation and introduction
- Phase field method intro
- Thermodynamics (local)
- Numerical approach (FiPy digression)
- Results
- Conclusions

Reactive Wetting – More Complicated

Reactive Wetting – More Complicated

Interpolation between solid and fluid phases

 $f(\phi, \rho_1, \rho_2) = (1 - p(\phi)) f^F(\rho_1, \rho_2) + p(\phi) f^S(\rho_1, \rho_2) + Wg(\phi)$

Derivation

Interpolation between solid and fluid phases $f(\phi, \rho_1, \rho_2) = (1 - p(\phi)) f^F(\rho_1, \rho_2) + p(\phi) f^S(\rho_1, \rho_2) + Wg(\phi)$

Time Scales

Time scale	Symbol	Expression	Value (s)
instantaneous convection	t_a^*	R_0/U^*	
convection	t_a	R_0/U	1.97×10^{-8}
viscous	t_v	$ ho_l^{ m equ} R_0^2/\eta_l$	3.68×10^{-6}
inertial	t_i	$\sqrt{ ho_l^{ m equ} R_0^3 / \gamma_{lv}}$	$1.97{ imes}10^{-8}$
phase field	t_{ϕ}	$\delta^2/\epsilon_{\phi}M_{\phi}$	1.0×10^{-9}
perceptible diffusion	$t_{ m diff}$	$\delta^2/4K^2D_f$	7.69×10^{-4}
bulk diffusion	$t_{ m d}$	R_{0}^{2}/D_{f}	1.04×10^{-3}
solid deformation	t_s	$\delta \eta_s / \gamma_{lv}$	1.05×10^{-2}
capillary	t_c	$\eta_f R_0 / \gamma_{lv}$	1.05×10^{-10}
interface equilibration			?.??

So Now we have Equations

- Just solve them!
- What does that mean?
- The Usual Scheme:
 - Variables on LHS
 - Finite Difference
 - Iterate

 $\frac{D\rho_i}{Dt} = -\rho_i \nabla \cdot \mathbf{v} - \nabla \cdot \mathbf{J_i}$ $\rho \frac{D\mathbf{v}}{Dt} = \nabla \cdot \sigma$

 $\frac{D\phi_k}{Dt} = M_{\phi_k} \frac{\delta S}{\delta \phi_k}$

 All of these choices have consequences (poor convergence, instability, etc.)

Solve Them!

THIS IS FAR EASIER SAID THAN DONE!!

- The equations formulated/chosen might be a "bad" choice
- Finite differencing---Stability Finite Difference turns equations PDEs into Ax=b
 $\frac{\partial \phi}{\partial t} \rightarrow \frac{\phi^{n+1} \phi^n}{\Delta t} = RHS(\phi^?, c^?, ...)$
- Choice of backwards/forwards is about stability
- Usual Scheme will yield a number of matrix equations
- What order do I solve them in?

 $\begin{aligned} \frac{D\rho_i}{Dt} &= -\rho_i \nabla \cdot \mathbf{v} - \nabla \cdot \mathbf{J_i} \\ \frac{D\phi_k}{Dt} &= M_{\phi_k} \frac{\delta S}{\delta \phi_k} \quad \rho \frac{D\mathbf{v}}{Dt} = \nabla \cdot \sigma \end{aligned}$

Outline

- Motivation and Introduction
- Phase Field Method
- Thermodynamic derivation
- Numerical approach (FiPy digression)
- Results
- Conclusions

Numerical Approach

Segregated picard iterations

FiPy

The segregated solver did not work for low viscosities and binary materials (worked for pure materials)

The Trilinos Project

Numerical Approach

Fully coupled picard iterations

FiPy

- FiPy is the frontend
- Using Trilinos solvers and preconditioners as the backend
- FiPy is modified for both coupled and parallel solutions
- Limited by CFL condition (not speed of sound)
- Worked with Aaron Lott (UMD) on optimizing Trilinos precondtioners

Numerical Approach

Fully coupled picard iterations

Parasitic Currents

$$\frac{\partial (\rho u_i)}{\partial t} + \partial_j (\rho u_i u_j) = \partial_j (\eta [\partial_i u_j + \partial_i u_j]) - \begin{bmatrix} \partial_i P + \epsilon T \rho_k \partial_i \partial_j^2 \rho_k \\ P = \rho_i \mu_i^c - f \\ \mu_k = \mu_k^c - \epsilon T \partial_j^2 \rho_k \end{bmatrix}$$

$$\frac{\partial (\rho u_i)}{\partial t} + \partial_j (\rho u_i u_j) = \partial_j (\eta [\partial_i u_j + \partial_i u_j]) - \begin{bmatrix} \rho_k \partial_i \mu_k \\ P = \rho_i \mu_i^c - f \\ \mu_k = \mu_k^c - \epsilon T \partial_j^2 \rho_k \end{bmatrix}$$
energy conserving

National Institute of Standards and Technology U.S. Department of Commerce

Jamet et al., JCP, 2002

FiPy

• Open source

- Python
- Finite volume

113 mailing list members

- Motivation and Introduction
- Phase Field Method
- Thermodynamic derivation
- Numerical approach (FiPy digression)
- Results
- Conclusions

Too Viscous Liquid (Less physical)

Nearly Inviscid Liquid (physical)

Nearly Inviscid Liquid (physical)

Note Oscillations!

Oscillations

Spreading Rate

Contact Angle

Au-Ni, Cu-Mo experiments

Concentration Effects

$$S^{\text{equ}}(t) = \gamma_{sv}^{\text{equ}} - (\gamma_{sl}^{\text{equ}} + \gamma_{lv}^{\text{equ}} \cos \theta(t))$$
$$\tilde{\gamma}(t) = \int_{l(t)} \left[\epsilon_k T |\nabla \rho_k(t)|^2 + \epsilon_\phi T |\nabla \phi(t)|^2 \right] dl$$

 $\gamma^{\text{equ}} = \tilde{\gamma} \left(t \to \infty \right) \qquad \tilde{S} \left(t \right) = \tilde{\gamma}_{sv} \left(t \right) - \left(\tilde{\gamma}_{sl} \left(t \right) + \tilde{\gamma}_{lv} \left(t \right) \cos \theta \left(t \right) \right)$

$$\tilde{S}(t) = \tilde{\gamma}_{sv}(t) - (\tilde{\gamma}_{sl}(t) + \tilde{\gamma}_{lv}(t)\cos\theta(t))$$
$$S^{\text{equ}}(t) = \gamma_{sv}^{\text{equ}} - (\gamma_{sl}^{\text{equ}} + \gamma_{lv}^{\text{equ}}\cos\theta(t))$$

Cu-Si experiments

Fig. 2 Cross section of a Cu/Si sample cooled to room temperature from 1100 °C at $t > t_f$ (SEM). The dashed line indicates the initial position of the substrate surface

Protsenko et al., JMS, 2008

Oscillations!!!

Cu-Si experiments

Dissipation Mechanism

Outline

- Motivation and Introduction
- Thermodynamic derivation
- Numerical approach
- Results
- Conclusions

Conclusions

- The dissipation mechanism is caused by "triple-line friction" when spreading is inertial.
- The dissipation mechanism is related to interface equilibration after inertial spreading.
- Larger drops, thinner interface, more physical
- Reactive wetting examples available soon with FiPy

Modeling the early stages of reactive wetting, Daniel Wheeler, James A. Warren and William J. Boettinger, PRE (accepted for publication) 2010

