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Taxonomy of Networked 
Systems

Infrastructure / 
Communication 
Networks

Internet / WWW
MANET
Sensor Nets
Robotic Nets
Hybrid Nets: 
Comm, Sensor, 
Robotic and 
Human Nets

Social / 
Economic 
Networtks

Social 
Interactions

Collaboration
Social Filtering
Economic        

Alliances
Web-based 

social systems

Biological 
Networks

Community
Epiddemic
Cellular and 
Sub-cellular
Neural
Insects
Animal Flocks
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Biological Swarms

44



Collaborative Robotic Swarms
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Autonomous Swarms –
Networked Control



Biological Network Types
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Examples of biological networks: [A] Yeast transcription factor-binding network; [B] Yeast protein
-protein interaction network; [C] Yeast phosphorylation network ; [D] E. Coli metabolic network ; 
[E] Yeast genetic network ;  Nodes colored according to their YPD cellular roles [Zhu et al, 2007]



Biological Networks

• Systematic approaches to study large numbers of proteins, 
metabolites, and their modification have revealed complex 
molecular networks 

• Significantly different from random networks and often exhibit 
ubiquitous properties in terms of their structure and organization

• They are actually dynamic, interacting, weighted hypergraphs. 
Weights exist at nodes and links. Weights can be numerical, logical, 
ODEs, rules, etc. (various annotations).

• Analyzing these networks provides novel insights in understanding 
basic mechanisms controlling normal cellular processes and 
disease pathologies

• Indispensable component of Systems Biology
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Networks and 
Networked Systems

Internet backbone
(Lumeta Corp.)

Internet: North American cities
(Chris Harrison)

Trust
(J Golbeck - Science, 2008)

Vehicle, robot networks

Physical

Logical
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Outline

• Multiple interacting dynamic 
hypergraphs – three challenges

• Networks and Collaboration
Constrained Coalitional Games

• Trust and Networks
• Topology Matters  
• Conclusions and Future Directions 
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Multiple Interacting Dynamic 
Hypergraphs

• Multiple Interacting Graphs 
– Nodes: agents, individuals, groups, 

organizations
– Directed graphs
– Links: ties, relationships
– Weights on links : value (strength, 

significance) of tie
– Weights on nodes : importance of 

node (agent)
• Value directed graphs with 

weighted nodes
• Real-life problems: Dynamic, 

time varying graphs,  
relations, weights, policies
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Three  Fundamental   
Challenges

• Multiple interacting dynamic hypergraphs involved
– Collaboration hypergraph: who has to collaborate with whom and 

when.
– Communication hypergraph: who has to communicate with whom 

and when 
• Effects of connectivity topologies: 

Find graph topologies with favorable tradeoff between 
performance improvement (benefit) of collaborative 
behaviors vs cost of collaboration
– Small word graphs achieve such tradeoff
– Two level algorithm to provide efficient communication

• Need for different probability models – the classical 
Kolmogorov model is not correct
– Probability models over logics and timed structures
– Logic of projections in Hilbert spaces – not the Boolean of subsets 



Outline

• Multiple interacting dynamic 
hypergraphs – three challenges

• Networks and Collaboration
Constrained Coalitional Games

• Trust and Networks
• Topology Matters  
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What is a Network …?

• In several fields or contexts:

14

– social
– economic
– communication
– sensor
– biological
– physics and materials



A  Network is …

• A collection of nodes, agents, …
that collaborate to accomplish actions, 
gains, …
that cannot be accomplished with out such 
collaboration

• Most significant concept for dynamic 
autonomic networks
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The Fundamental Trade-off

• The nodes gain from collaborating
• But collaboration has costs (e.g. communications)
• Trade-off: gain from collaboration vs cost of  

collaboration
Vector metrics involved typically
Constrained Coalitional Games
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• Example 1: Network Formation  -- Effects on Topology
• Example 2: Collaborative robotics, communications
• Example 3: Web-based social networks and services

● ●
• Example 4: Groups of cancer tumor or virus cells



Example: 
Autonomic Networks

• Autonomic: self-organized, distributed, unattended
– Sensor networks
– Mobile ad hoc networks
– Ubiquitous computing

• Autonomic networks depend on collaboration
between their nodes for all their functions
– The nodes gain from collaboration: e.g. multihop routing 
– Collaboration introduces cost : e.g. energy consumption 

for packet forwarding
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Example: Social Webs

• In August 2007, there were totally 330,000,000 
unique visits to social web sites. (Source: 
Nielsen Online)
– 9 sites with over 10,000,000 unique visits
– MySpace, Facebook, Windows Live Spaces, Flickr, 

Classmates Online, Orkut, Yahoo! Groups, MSN 
Groups

• Main types of social networking services 
– directories of some categories: e.g. former 

classmates
– means to connect with friends: usually with self-

description pages
– recommender systems linked to trust/reputation
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Game Theoretic Approach

• The conflict between the benefit from collaboration and 
the required cost naturally leads to game-theoretic
studies.
– Nodes strategically decide the degree to which they volunteer 

their resources for the common good of the network.

– Nodes attempt to maximize an objective function that takes the 
form of a payoff, which depends on the pattern of collaboration

• We study collaboration based on the notion of coalitions.

– In coalitions, users connect to (join) each other, and are able to 
acquire access to each other.

– The notion of coalitions can be well captured by coalitional game 
theory (aka cooperative game theory).
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Coalitional Games

• The central concept is that of coalition formation: 
subsets of users that join their forces and decide to act 
together.
– Players form coalitions to obtain the optimal payoffs 
– Players can negotiate collectively
– The coalitional game model fits better to the practical scenarios, 

where agents naturally form coalitions, such as soldiers in the 
same group. 

• Coalitional Games in characteristic function form
– The coalitional game G = {N, v}, where N  = {1, 2, …, n} is the 

set of all nodes
– Characteristic function v :2N→R , on all subsets S (coalitions) of 

N, represents the total payoff of a coalition
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Network Model

• The communication structure of the network is represented as 
an undirected graph   .
– Undirected links: the willingness of both nodes is necessary to 

establish and maintain a link.
– In wireless networks, reliable transmissions require that two nodes 

interact to avoid collisions and interference.

• If i and j agree to collaborate with each other, the link              . 
– Add link ij to the existing graph g:              ;
– Sever link ij from g :              .

• A coalition of     is a subgraph             , where
– there is a path in connecting i and j ;
–

∈ij G
+G ij

−G ij

⊆'G G ∀ ∈ ∈'  and 'i G j G

∈ ∈ implies ' .ij G ij G

21

G

G
'G



Gain

• Users gain by joining a coalition.
– Wireless networks

• The benefit of nodes in wireless networks can be the rate of data flow they 
receive, which is a function of the received power

Pj is the power to generate the transmission and l(dij) < 1 is the loss factor
e.g:

– Social connection model (Jackson & Wolinsky 1996)

• rij is # of hops in the shortest path between i and j
• is the  connection gain  depreciation rateδ≤ ≤0 1

))(( ijjij dlPfB =

0log(1 ( ( ) / ))ij j ijB P l d N= +

1 or ( )ijr

ij i
j g

B V w Gδ −

∈

=∑
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Cost
• Activating links is costly.

– Wireless networks
• Energy consumption for sending data:

RS  depends on transmitter/receiver antenna gains and system 
loss not related to propagation

: path loss exponent 
• Data loss during transmission
νi is the  environment  noise  and  Iij is the interference

– Social connection model
• The more a node is trusted, the lower the cost to establish link 

e.g.suppose that the trust  i has on  j is  sij (between 0 and 1),    
we can define the cost as the inverse of the trust values

α

α
ijij RSdC =

( , ) 0ij i ijC h Iν= >

1/
ij ij
C s=

( )
t
i

i ij
j N

c G C
∈

= ∑
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Pairwise Game and 
Convergence

• Payoff of node i from the network       is defined as

• Iterated process
– Node pair  ij is selected with  probability  pij
– If  link ij is already in the network, the decision is whether to 

sever it, and otherwise the decision is whether to activate the link
– The nodes act myopically, activating the link if it makes each at 

least as well off and one strictly better off, and deleting the link if 
it makes either player better off

– End: if after some time, no additional links are formed or severed
– With random mutations , the game converges to a unique 

Pareto equilibrium (underlying Markov chain states )

= − = −( ) gain cost ( ) ( )i i iv G w G c G
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Pairwise Game

• Pairwise game is modeled as an iterated process
– Individual nodes activate and delete links based on the improvement that 

the resulting network offers them relative to the current network

• A strategy of node  i is a vector defined as

– :    node i wants (or does not) to form a link                 
with node j

– A link ij is formed only if
• A strategy profile at time period t

corresponds to the 
network at time t.

1 1 1γ γ γ γ γ− += , , , ,( , , , , , ).i i i i i i i n

1 0γ =,  (  )i j or

1 1γ γ= =, , and .i j j i

γ γ γ=( ) ( ) ( )
1( , , )t t t

n
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Convergence of the Iterated 
Pairwise Game

• Pairwise stability
– No more link is added and no existing link is deleted 

• Lemma: the iterated pairwise game converges to a pairwise 
stable network or a cycle of networks.
– The converging pairwise stable network may be inefficient

– Random mutations are introduced, the game converges to a 
unique Pareto equilibrium (Markov chain states strategy profiles γ)
Intent of players is carried out with probability   1- ε

1 2

6

5 4

3

potential
link

V=0.9 < c=1

pairwise stable

1 2

6

5 4

3

pairwise stable and better payoff

δ= =0.9, 0.3V

Cost between neighboring 
nodes is 1

26



Stochastic Stability

• Dynamic process is now  a finite state, aperiodic, irreducible 
Markov chain (graph process)-- steady-state distribution, 
П(g, ε).

• A network g is stochastically stable if П(g, ε) is bounded 
below as the error rate, ε, tends to zero; 
П(g, ε) a >0, as ε 0.
– Stochastically stable networks must be pairwise stable networks or 

networks of closed cycles
– Stochastic stability identifies the most “robust” or easy to reach 

networks in a particular sense (the most mutations needed to get 
“unstuck”).

– The above example converges to a Pareto efficient pairwise stable 
network by considering all the possible dynamic paths between the 
left and right networks.
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Network Formation 
Dynamics

28

Parameter
Values:
δ = 0.2
α= 2
V = 1
P = 2



Coalition Formation at the 
Stable State

• The cost depends on the physical locations of nodes
– Random network where nodes are placed according to a uniform 

Poisson point process on the [0,1] x [0,1] square.
• Theorem: The coalition formation at the stable state for n ∞

— Given                                           is a

sharp threshold for establishing the 
grand coalition (  number of 
coalitions = 1).

— For                     , the threshold is 

less than

2
0

α

δ ⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

ln
,

n
V P

n

0 1δ< ≤
2
α

⎛ ⎞
⎜ ⎟
⎝ ⎠

ln
.

n
P
n

n  =  20
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Topologies Formed
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Stability of Coalitions

• Core stability
– A network  is core stable if there is no subset of nodes  S

who prefer another network        to   and who can change the 
network from       to       without the cooperation   from the rest of 
the set of nodes N \S.

– Core stability allows that a node is able to interact and 
coordinate with any other nodes in the same coalition. 

• Core stability is stronger than pairwise stability.

≥ ∈

∈ ∉ ∈

∉ ∈ ∈ ∈

ˆ( ) ( ) for all  and there is at least one strict inequality
ˆIf  but ,  then ,
ˆIf  but ,  then  and/or 

i ix G x G i S
ij G ij G i j S
ij G ij G i S j S

31
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Formation Topology

• Conditions under which the formation game converges to a network with small-
world properties

• Network model:
– All nodes are equally placed on a circle

– Benefit:                      

– Cost:          (cost of establishing a link between two nodes that are r hops away)

• Formation process 
– Initial network where nodes only connecting to their immediately neighbors, i.e.,

– Direct connections between nodes that are at least r hops away on the circle if

∑
∈

−=
gj

r
ij

ijVB 1δ

1
21

2

1 −⎥⎦
⎥

⎢⎣
⎢

−
<< n

d
d

C
BC

δ

rd
C

1
21

+−⎥⎦
⎥

⎢⎣
⎢

−
>

r
n
dr
C

B
δ
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Formation Topology (cont.)

• We investigate the effect of shortcuts following the perturbation 
approach to small worlds proposed by Higham (Higham, 2003)
– ε represents the probability that a shortcut is added to the initial network.
– Assume the shortcuts are added to nodes that are at most  r hops away 

on the circle

• Proposition: Let                 , where K > 0 and β ≥ 0. For β > 2, the 
effect of shortcuts on convergence rate is negligible. β = 2 is the 
threshold. For β < 2, the shortcuts are dominantly decreasing the 
SLEM, thus the small-world topology appears.

• Given that                    , small-world topology appears if more than 

K/n shortcuts are added.

βε nKr /=

r
n
dr
C

B
−⎥⎦
⎥

⎢⎣
⎢

−
>

21 δ
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Time-dependent Game
• The game is time-dependent

– The payoff players receive varies over time.
– The dynamics of the game can be separated in rounds of 

successive coalition expansions (or contractions).

• The dynamic coalition formation process is described as 
an iterated game
– : the action i chooses at time t.
– : the payoff of user i at time t.
– : players’ probability of playing action x at time t.
– : the set of users that form the coalition user i belongs to at 

time t.
– user i and user j decide to activate link ij at time t:

t
ix
( )tiv x
( )tq x
t
iC

− −= = ∪1 1t t t t
i j i jC C C C
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Value Function

• Value function for coalition C (component-
wise additive value function)

• Value function depends on topology

∈

= ∑( ) ( )i
i C

v C v g

2

31

2

31

Same coalition C={1,2,3} 
with different topology

v({12,13})≠v({12,23,13})
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Stability of Game Dynamics

• Nash equilibrium
– Player action probability q is a Nash equilibrium if no player i can 

deviate from q and achieve a higher payoff 

• Core stability
– A network g is  core stable if there is no subset of nodes S who 

prefer another network g’ to  g and who can change the network 
from g to  without the cooperation  from the rest of the set of 
nodes N\S.

− −

−
∈ ∈≠

∀ ≤∑ ∑∏ ∏, ( ' , ) ( ) ( ) ( ).
i i

i i i j j i j j
x X x Xj i j

i v x x q x v x q x
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Learning via Regret

• Question: 
– Are there simple strategies that lead our coalition formation 

game to equilibrium?

• Solution: 
– Players stochastically adjust their strategies by a reinforcement 

learning rule guided by “regret”.
• Learning strategy: 

– At each period, a player may either choose to continue playing 
the same action as in the previous period, or switch to other 
actions with probabilities that are proportional to how much 
higher his accumulated payoff would have been if he had 
always made that change in the past.
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Regret Matching Strategy

• Average payoff through time t for user i

• Average regret from not having played x’i

• Regret matching strategy
– at each time period t + 1, the player i plays either action activate 

or not activate with a probability proportional to the nonnegative 
part of his regret up to time  t

−
≤ ≤

= ∑
1

1
( , ).t t t

i i i i
s t

v v x x
t

−
≤ ≤

== −∑, '
1

1
( ' , ) .

i

t t t
i i i ii x

s t

r v x x v
t

+
+

+=
∑

,1

, ''

( )
( ) .

( )
i

ii

t
i xt

i i t
i xx

r
q x

r
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Results on Stability

• Nash equilibrium
– : the proportion of time up to  t that each 

action-tuple  x was played.    
– :  the empirical distribution.
– Results: Given that all players use the regret 

matching strategy, the empirical distribution  
converges almost surely to the set of Nash equilibria.

• Core existence
– If  i, j,  vij + vji ≥ 0,  the core of the formation game is 

nonempty

φ ( )t x

φ
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Simple Case Study

• Gain: users benefit from connecting to as many other 
users as possible, directly (one-hop) or indirectly (multi-
hop, through other users)

• Cost: random variable with an exponential probability 
distribution with parameter    λ.

• Result 1: All coalitions formed at the Nash equilibrium 
are trees.

• Result 2: The probability that the game has nonempty
core is greater than or equal to

= −( ) | ( ) 1|t
ib g C i

λ− −− 4 ( 1)(1 ) .N Ne
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Coalitions, Networks and 
Constraints

• Cooperative Game in characteristic 
function form Γ = {N, v}, N = {1, 2, …, N},   
v :2N→R , on all subsets S (coalitions) of N

• All coalitions cannot be formed
• To collaborate agents need to  communicate
• Communication Network  (N, L)

– Edges – links between payers
– i and j directly connected
– i and j path connected

• Cooperation components
• Links between players in S  ,  L(S )
• Network  (S , L(S )) induces a partition of S
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Constrained Coalitional 
Games

• Network-restricted cooperation game or 
constrained coalition {N, vL}

• {N, v, L}  communication situation

• Characteristic  function

• Myerson value : Shapley value of {N, vL}

/

( ) ( ) for each
S

S S NL

C L

v v C
∈

= ⊆∑
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Network Formation

• Form links pairwise
• Iterative game
• Better understanding of topologies – dynamics 

– topology control
• Network formation with costs for establishing 

links
• {N, v, L, c}       {N, v L,c}

• Stability vs efficiency of the resulting network
• Small world graphs, expander graphs …

,

/
( ) ( ) | ( ) | for eachL c

C L
v v C c L

∈

= − ⊆∑
S

S S S N
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Outline

• Multiple interacting dynamic 
hypergraphs – three challenges

• Networks and Collaboration
Constrained Coalitional Games

• Trust and Networks
• Topology Matters  
• Conclusions and Future Directions 
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Networks and Trust 

• Trust and reputation critical for collaboration
• Characteristics of trust relations:

– Integrative (Parsons1937) – main source of social order
– Reduction of complexity – without it bureaucracy and 

transaction complexity increases (Luhmann 1988)
– Trust as a lubricant for cooperation (Arrow  1974) –

rational choice theory
• Social Webs, Economic Webs

– MySpace, Facebook, Windows Live Spaces, Flickr, 
Classmates Online, Orkut, Yahoo! Groups, MSN Groups

– e-commerce, e-XYZ, services and service composition 
– Reputation and recommender systems
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Ising and Spin Glass 
Models

● Statistical Physics models for magnetization
Orientation of each particle’s spin depends on its 

neighbors
Ising Model: behavior of simple magnets
Spin Glass Model: complex materials

● Interpretation:
s = {s1, s2,…, sn}  is a  configuration of  n 

particle spins -- sj = 1  or  -1  (up or down) 

Energy for configuration s

∈
∈

= − −∑ ∑1( )

i

ij i j i
i V i
j N

mHH J s s s
T T

s

– Ising Model:   Jij = J for all i, j
– Spin Glass Model:  Jij depend on i,j and can be random
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Ising/SG Models and 
Games

• Ising/SG models can be interpreted as dynamic  (repeated) games:  
– The value of si represents whether node i is willing to cooperate or not
– each particle selects spin to maximize its own payoff

– Ising model (Jij = J>0) : align its spin with the majority of neighbors spin
• High T, conservative agents, not willing to change, small payoffs
• Low T, aggressive agents, larger payoffs 

– Collection of local decisions reduces the total energy of the interacting 
particles

• Inspires an approach where trust is an incentive for cooperation
– Jij can be interpreted as the worth of player j to player i
– decide to cooperate or not based on benefit from cooperation and trust 

values of neighbors 

π
∈

= ∑( ) /
i

i ij i j
j N

J s s T
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Spin Glass 
Cooperative Game

• Spin glass model as a cooperative game (spin glass game)                         
– S ⊆ N = {1, 2, …, n} is a  coalition, in which all nodes cooperate

– Interaction topology (Jij’s) moderates effects pos. and neg. feedback

– v(S) : value of the characteristic function of the game , v: 2N→R, which is the
maximum payoff S can get without cooperation from other nodes N /S.

– The cooperative game is denoted as Γ = (N, v)

• Object: to find  what  form or policy for Jij  can induce all (or most) 
nodes to cooperate:  maximize the coalition

π
∈ ∈ ∈ ∉

= = −∑ ∑ ∑
, ,

( ) i ij ij
i S i j S i S j S

v S J J

Subset S = {1,2,3,4}
v(S) = J12+J21+J14+J41+J43+J34 -J36 -J154

6

5 1

2

3
J12

J21

J14

J41

J34

J43
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Spin Glass Cooperative 
Game Properties

● Spin Glass game is a convex and superadditive game iff  (net pos. effects)

● Shapley value :                                          in the core

● Not well understood in the regime of both negative and positive net effects

● Effects of interaction matrix structure (sparsity, neighborhood structure, 
range of interactions, strength of interactions) not well understood; 
Topology effects in network analog

● Oriented Spin Glass Game Γ(N,v) where v now depends on both an 
interaction matrix J and a preference vector L ; a pair of char. fcns

● Replica method can be used to analyze various problems under various 
models and constraints on  J and  L

( ) i ij
j

v Jϕ
∈

= ∑
N

, , 0∀ + ≥i j j ii j J J

, ,

( ) ij ij i
i j S i S j S i S

v S J J L±
∈ ∈ ∉ ∈

= − ±∑ ∑ ∑



Cooperative  Games with  
Negotiation

• Theorem: Γ = (N, v) has a nonempty core if                                The 
payoff allocation to node  i ,                            , where xij is computed 
as follows

is a solution in the core.

– This payoff allocation indicates a way to encourage cooperation
– Players with positive gain can negotiate with their neighbors by 

sacrificing certain gain (offering their partial gain λijxij )

+ ≥ ∀0, , .ij jiJ J i j

∈
= ∑

i
i ijj N

x x

λ

λ

λ λ

⎧ ≥ ≥
⎪

= + ≤ >⎨
⎪ − > ≤⎩

≤ ≤

,            if 0, 0

, if 0, 0

(1 ) , if 0, 0

with 0 , 1 

ij ij ji

ij ij ji ji ij ji

ij ij ij ji

ij ji

J J J

x J J J J

J J J
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Trust as Mechanism to 
Induce Collaboration

● Trust is an incentive for collaboration
– Nodes who refrain from cooperation get lower trust values
– Eventually penalized because other nodes tend to only cooperate 

with highly trusted ones.
● For node  i  loss for not cooperating with node  j is a 

nondecreasing  function  of  Jji     , f (Jji),   
● New characteristic function is

● Theorem : if                                       , the core is nonempty and               
is a feasible payoff allocation in the core. 

By introducing a trust mechanism, all nodes are induced to    
collaborate without any negotiation

∈ ∈ ∉

= −∑ ∑
, ,

( ) ( )ij ij
i j i j

J f J
S S S

v S

∀ + ≥, , ( ) 0ij jii j J f J
∈

=∑
i

i ijj N
x J
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Dynamic Coalition 
Formation

Two linked dynamics
• Trust propagation  and  Game evolution

Stability of 
dynamic 
coalition

Nash  equilibrium
An example of constrained 

coalitional games



Game Evolution

• Strategy of node i:
– sij= 1 (= -1) represents that i   cooperates (does not cooperate) with its 

neighbor  j
• Payoff for  node  i when interacting with  j : xij = Jij sij sji

– xij > 0  (< 0)  positive link  (negative link)
– Node selfishness → cooperate with neighbors on positive links

• Strategy updates: node i chooses sij= 1 only  if all of the following  
are satisfied:
– Neighbor  j is trusted
– xij > 0, or the cumulative payoff of  i  is less than the case when it 

unconditionally  conducts  sij= 1.
• Trust evaluation:

– The deterministic voting rule
– Reestablishing period τ : once a node is not trusted, in order to 

reestablish trust it has to cooperate for τ consecutive time steps

{ 1,1},ij is j N∈ − ∀ ∈
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Results of Game Evolution

● Theorem:                                    , there exists τ0, such that 
for a reestablishing period τ > τ0
– terated game converges to Nash equilibrium;
– In the Nash equilibrium, all nodes cooperate with all their neighbors.

● Compare games with (without) trust mechanism, strategy update:

∈
∀ ∈ =∑ and 

i
i i ijj N

i N x J

Percentage of cooperating pairs vs negative links Average payoffs vs negative links



Next Generation Trust 
Analytics

• Trust evaluation, trust and mistrust dynamics
– Spin glasses (from statistical physics), phase transitions 

• Indirect trust; reputations, profiles; Trust computation via 
‘linear’ iterations in ordered semirings 

• Direct trust: Iterated pairwise games on graphs with 
players of many types

( )ˆ( 1) , ( ) |i ji j is k f J s k j N+ = ∈

a b2 31

b
a

2007 IEEE Leonard Abraham prize
New Book  “Path Problems in 
Networks” 2010 
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Constrained Coalitional Games:        
Trust and Collaboration

Two linked dynamics
• Trust / Reputation 

propagation  and  
Game evolution

• Beyond linear algebra and weights, semirings of constraints, constraint 
programming, soft constraints semirings, policies, agents

• Learning on graphs and network dynamic games: behavior, adversaries
• Adversarial models, attacks, constrained shortest paths, …

• Integrating network utility maximization (NUM) with 
constraint based reasoning and coalitional games



Outline

• Multiple interacting dynamic 
hypergraphs – three challenges

• Networks and Collaboration
Constrained Coalitional Games

• Trust and Networks
• Topology Matters  
• Conclusions and Future Directions 
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Networks: 

– as distributed, asynchronous, feedback 
(many loops), hybrid automata (dynamical 
systems)

– as distributed asynchronous active 
databases and knowledge bases

– as distributed asynchronous computers

58

Networks: Different 
Linked Views



• Distributed algorithms are essential
– Group of agents with certain abilities
– Agents communicate with neighbors, share/process information
– Agents perform local actions
– Emergence of global behaviors

• Effectiveness of distributed algorithms
– The speed of convergence
– Robustness to agent/connection failures
– Energy/ communication efficiency

• Group topology affects group performance
• Design problem:

Find graph topologies with favorable tradeoff between performance 
improvement (benefit) vs cost of collaboration

• Example: Small Word graphs in consensus problems

59

Distributed Algorithms in 
Networked Systems and Topologies



The Importance of Being 
Well-Connected

• Local majority voting (Peleg ’96)
– Each of n citizens has an opinion about voting 

Yes or No
– Rule: Each citizen’s vote is based on the 

majority of its neighbors, including itself
– What is the minimum number of No-voters 

that can guarantee a No result?
– A few number of well connected nodes can 

determine the outcome of the process!
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Order of voting matters!

Iterative polling : Oscillation or

If NO voters do not follow the 
protocol, then 2 NO voters, are 
sufficient to change the other n-2 
YES voters’ opinion.

White circles: NO voters

Black circles: YES voters

Even if NO voters follow the protocol   
a small minority of         can result in 
one step convergence to NO

n2
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The Importance of Being 
Well-Connected  (cont.)
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Consensus problems

• A Simple model:
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– A flock of n agents moving at the same speed s, but 
with different headings

– Each agent updates its heading angle as an average 
of its neighbors including itself

– D is diagonal matrix of nodes’ degrees
– A is adjacency matrix

Vicsek’s model 
(Vicsek et al., Jadbabaie et al.)
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Design of information flow

• Fixed graphs: Geometric convergence with rate equal to 
Second Largest Eigenvalue Modulus (SLEM)

• How does graph topology affect location of eigenvalues?
• How can we design graph topologies which result in 

good convergence speed?

Symmetric  communication



65

Simple Lattice 
C(n,k)

Small world: Slight 
variation adding 

Small World Graphs

Φnk

Adding a small portion of well-chosen links →
significant increase in convergence rate
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Mean Field Explanation and               
Perturbation Approach

Initial graph

Adjacency/ F matrix Perturbed

Final 
graph
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Watts-Strogatz
Small World networks

• Random graph approach 
(e.g. Durrett 2007, Tahbaz and Jadbabaie 2007)

• Perturbation approach (Higham 2003 )
– Start from lattice structure G0=C(n,k)                 F0
– Perturb zero elements in the positive direction by             

for fixed             and
– Perturb the formerly nonzero elements equally, such 

that the stochastic structure of the F matrix is 
preserved Fε

– Analyze the SLEM as a function of the perturbation as 
α varies

α
ε

n
K

=
0>K .1>α
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• Refer to the perturbations as ε-shortcuts
• In the limit of large n :

– For           the effect of ε-shortcuts on convergence rate 
is negligible

– For          the effect of ε-shortcuts on convergence rate 
starts (spectral gap gain perturbation of same order)

– For           the shortcuts dominantly decrease SLEM
– For            SLEM is very small 

• ε-shortcuts are loosely analogous to the shortcuts in Small 
World networks 

• a = 3 can be considered as the onset of small world effect 
with small world effect happening at α = 2

3α >

3α =

2=α
1=α

1- D case …



Analysis of W-S model

• A graph is small-worldizable if 
• For the ring type structure, in the limit of large n:

– For          the effect of ε-shortcuts is negligible
– For          the effect of ε-shortcuts starts (spectral gap gain 

perturbation of same order)
– For           the shortcuts dominantly decrease SLEM

• α=3 onset of small world effect; small world effect happening at α=2.

3α >
3α =

2=α

Onset of 
SW

SW 
dominant01 ( )Fμ−

1( )O n− 2( )O nε −= 1( )
log

O
n n

ε =

1( )
log

O
n n

ε =( )1(log )O n − 1( )
log log

O
n n

ε =

( ) 1 .
1 ( )
SLEM F
SLEM F nε

>>
−
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Distributed exploration 
of the graph structure

• Self-organization for better performance and 
resiliency

• Hierarchical scheme to design a network structure 
capable of running distributed algorithms with high 
convergence speed

• A two stage algorithm:
1- Find the most effective choice of local leaders
2- Provide nodes with information about their location 

with respect  to other nodes and leaders and the 
choice of groups to form

• Divide N agents into K groups with M members each

, select ‘leaders’= × ≤ ×,N K M K M N
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Distributed self - organization

Goal: design a scheme that gives each node a vector of compact global information
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Social degrees and leaders

– Social degree of order 2 : SD (2) (v) = number of 
neighbors of node v

– Social degree of order k >2 : SD (k) (v) = number of  
cycles of length k passing through node v

– Social degrees of order 2 and 3 can be determined  
by a simple query

– A node is called a leader of order k if its social 
degree of order k is greater than that of its neighbors
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Influence vector as a metric                  
for well-connectedness

• K local leaders,  N - K nodes  regular nodes

• Regular nodes need to determine how well they are 
located with respect to local leaders and how they are 
influenced by them

• Distance to leaders does not include information on how 
“well-connected” a regular node is to leaders

• Consider a random walk on the graph starting from 
regular node i,  with leader nodes as absorbing states, 
the influence of leader k on regular node i , is the 
probability that the random walk hits k before  other 
leaders
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Two stage semi-decentralized 
algorithm

• Stage 1: Determining K leaders
– Each node determines its social degree via local query
– Dominant nodes in each neighborhood send their degrees to the 

central authority
– Central authority computes their social scores

Choice of α determines whether leaders in star-like 
neighborhoods are preferred

– The central authority selects the K nodes with highest scores as 
social leaders and gives them an arbitrary order

( 2 ) ( 3 )( ) ( ) (1 ) ( )α α= + −SC k SD k SD k
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Algorithm (cont’d)

• Stage 2: Determining the influence vectors
– Based on its order each leader takes its influence vector to be 

the fixed vector ei
– Regular  nodes update their influence vector entries:

• For connected graphs, for  t large enough,      converges to the 
influence of leader k on node I

• Upon calculation of influence vectors, each regular node determines 
its local leader and stops its communication with neighbors who 
have other leaders

• Graph decomposes into two level hierarchy with efficient 
communication pattern 

( )

1( 1) ( ) ( )
1

i

k k k
i i j

j N ti

x t x t x t
n ∈

⎡ ⎤
+ = +⎢ ⎥+ ⎣ ⎦

∑
k
ix



Reliability and Spanning 
Trees

• End to end applications
• Spanning tree as a 

minimally connected 
graph

• Τ(G) as a measure of 
robustness to losses

• References: Kelmans, 
Colbourn

1 2

i

i
1

{1, 2,..., }
{ , ,..., }

:  Constant link loss probability
:  # of connected components with i edges

( ): Number of spanning trees

Rel = N (1 )

For sufficiently large p:
( )(1

τ

τ

−

= −

−

−

∑

e

e
i e i

i n

n
l l l

p
N

p p p

G(V,E)
V =
E =

G

(G, )

G 1 1 1) Rel( , ) ( )(1 )τ− − + −≤ ≤ −n e n np p p pG G
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Graph Theory for Robust                         
Network Design

• Goal: Given a base topology add k edges from a set of 
m candidates such that results in maximum number of 
spanning trees

• Number of spanning trees
• Incidence vector of an edge shows between which 

nodes it is

• Graph Laplacian

2

1 1 11( ) ( ) det( )
Tn

i
i

G L L
n n n

τ λ
=

= = +∏

(1,5) 1 5

: incidence vector

[1 0 0 0 1]

i

i

T

f
f e

f e e

eα β= −

= − =

−

1

m
T T

nm mn i i
i

L D A F F f f
=

= − = =∑

15 15

1 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 1

Tf f

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

5
1

3 4

2
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Counting Spanning Trees

• Normalized Laplacian
– If G=(Vn,E) is connected:

• Random walk matrix

• Matrix-Tree theorem (Kirchhoff)

1/ 2 1/ 2D LD−=L
2 110 ... 2n nnλλ λ λ−−= ≤ ≤ ≤ <<

1 1

1( ) 1 ( )i n i

P D A I D L
Pλ λ

− −

+ −

= = −
= − L

2

1

2

1

( ) ( )
1 1 1( ) ( ) det( )

( ) det( ) , 1,... .

n

j
j

n

in
i

j k in
j i k

i
i

Adj L L

L L J
n n n

d
Q d k n

d

τ

τ λ

λ

=

=

= ≠

=

=

= = + =

= =

∏

∏
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∑

G

G

L th is the i principal submatrix of -iQ I P

1 1 T
n nJ
n

=
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Problem Statement

• Goal: Given a base topology add k edges from a set of 
m candidates such that results in maximum number of 
spanning trees

• Dynamic graph process resulting from adding edges
2

1 1 11( ) ( ) det( )
Tn

i
i

L L
n n n

τ λ
=

= = +∏G

0

Maximize ( ( ))
Subject to:

( 1) ( ( ), ( )), 0,1,..., 1
( ) ( 1), ( 1) ( ( ))

( )

G t k

G t Add G t u t t k
u t e t e t S E G t
G t

τ +

+ = = −⎧
⎪ = + + ∈ ⊆⎨
⎪ =⎩ G
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Formulation and Relaxation

• Goal: Given a base topology add k edges from a set of 
m candidates such that results in maximum number of 
spanning trees (Approach similar to Ghosh and Boyd 06)

• Relax to

• At maximum         has equal derivatives for positive  xi s

0
1

0
1

Maximize or equivalently

1log  det  

Subject to :
1

{0,1}

m
T

i i i
i

m
T

i i i
i

T

m

L x f f

L J x f f
n

x k
x

τ
=

=

⎛ ⎞+⎜ ⎟
⎝ ⎠

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

=

∈

∑

∑

0
1

1log  det  

is concave in x.

m
T

i i i
i

L J x f f
n =

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

∑

( *) ( *)* 0 ,i
i j

x xx j
x x

τ τ∂ ∂
> ⇒ ≥ ∀

∂ ∂
0x ≥

( )xτ
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Robust Network Design

• Derivative:

• If feasible, add edges such that the effective 
resistance distance of all selected edges 
become equal and greater than the effective 
resistance distance between non-selected 
candidates 

1

0 i
1

1

eff

1 , Chosen edge set (x 0)

1R ( )

m
T T
i i i i i

i

T
i i

f L J x f f f i
n

i f L J f
n

λ
−

=

−

⎛ ⎞+ + = ∀ ∈ >⎜ ⎟
⎝ ⎠

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑
5

1

3 4

2 1A

( , )effR Vαβα β =
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Special Cases

• Adding 1 edge to a general graph
– In a given graph which shortcut will result in more 

spanning trees?
– If the edge is between nodes α and β:

– Select the edge corresponding to the maximal 
resistance distance

– Example: Adding a shortcut to a ring

( ) 0( (1)) 1 ( , ) ( )effG Rτ α β τ= + G
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Special Cases (cont’d)

• Adding 2 edges (α,β) and (γ,δ)

• Adding 3 or more edges similar: more complex terms 
due to compromising between symmetrizing the graph 
and joining nodes with the highest resistance distance

( )( )
( )2

0

1

( (2)) 1 ( , ) 1 ( , )

( ) ( ) ( ) ,

1[ ]

eff eff

ij

G R R

z z z z

Z z L J
n

γα γβ δα δβ

τ α β γ δ

τ

−

⎡= + + −⎣
⎤− − − − ⎥⎦

⎛ ⎞= = +⎜ ⎟
⎝ ⎠

G

Maximized by adding edge 
between high resistance 
distance nodes

Maximized by adding edge to 
symmetrize the graph
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Small World Phenomenon

• Small world phenomenon as the trade-off in adding k
shortcuts to a base graph such that the number of 
spanning trees is maximized

• Perturbation based method to model Watts-Strogatz small 
world networks (based on Higham 03, BarasHovareshti 08)

– Performance measure:     

Analyze            for large n as a
function of   ,as       varies

0

( )
( )

ετ
τ
G
G

Capture performance measure
of G0, as property of L(G0)

Do spectral analysis of G0 ,L0

Perturb zero elements of L0 by
ε ε

Interpret the result  as structural
perturbation

,Kn Lα
εε −= →

( )τ G
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Small World (cont’d)

• Consider the ratio of the increase in the number of 
spanning trees as the result of adding ε weights:

• Starting from a ring structure, in the limit of large n:
– For          the effect of ε-shortcuts is negligible
– For          the effect of ε-shortcuts starts 

(spectral gap gain perturbation of same order)
– For             the shortcuts dominantly increase 

the number of spanning trees, i.e.

.Kn αε −=

0

( )
( )
Gr
G

ετ
τ

=

3α >

3α =

1 3α< ≤
limn r→∞ = ∞
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Expander Graphs

• Fast synchronization of a network of oscillators 
• Network where any node is “nearby” any other 
• Fast ‘diffusion’ of information in a network
• Fast convergence of consensus  
• Decide connectivity with smallest memory 
• Random walks converge rapidly
• Easy to construct, even in a distributed way (ZigZag graph product)

• Graph G,  Cheeger constant h(G)
– All partitions of G to S and Sc , 

h(G)=min (#edges connecting S and Sc )  / 
(#nodes in smallest of S and Sc )

• (k , N, ε) expander : h(G) > ε ; sparse but locally well 
connected  (1-SLEM(G) increases as h(G)2)
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Expander Graphs –
Ramanujan Graphs
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Constructing Expander           
Graphs

• Possible methods:
– Form a random expander as a 2d-regular multi-

graph in which the set of edges consists of d
separate Hamiltonian cycles on APs (Law and Siu 
2003)

– Form a union of two spanning trees chosen 
independently from the uniform distribution over all 
spanning trees of a complete graph, 
implementable by a random walk method (Goyal 
et al. 2009)
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Outline

• Multiple interacting dynamic 
hypergraphs – three challenges

• Networks and Collaboration
Constrained Coalitional Games

• Trust and Networks
• Topology Matters  
• Conclusions and Future Directions 
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Conclusions 

• Fundamental tradeoff between the benefit from 
collaboration and the required cost for collaboration

• Game theoretic studies for such conflict
• Two-phase coalitional games
• The convergence of the iterated pairwise games
• Phase transition of the coalition formation
• Stability of the formed coalitions
• Trust as a catalyst for collaborations
• Effects of topology on distributed algorithm performance 
• Performance vs. efficiency – small world graphs –

expander graphs
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How Biology Does IT?
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Control vs
Communication

• Many graphs  as abstractions
• Collaboration graph – or a model of what the 

system does (behavior)
• Communication graph – or a model of what the 

system consist of (structure)
• Nodes with attributes – several graphs
• Key question 1: Given behavior, what structure 

(subject to constraints) gives best performance?
• Key question 2: Given structure (and 

constraints) how well behavior can be executed?  
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Lessons Learned --
Future Directions

• Constrained coalitional games – unifying concept
• Generalized networks, flows - potentials, duality 

and network  optimization  (monotropic optimization)
• Time varying graphs – mixing – statistical physics 
• Understand autonomy – better to have self-

organized topology capable of supporting (scalable, 
fast) a rich set of distributed algorithms  (small world 
graphs, expander graphs) than optimized topology

• Given a set of distributed computations is there a 
small set of simple rules that when given to the 
nodes they can self-generate such topologies?
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Thank you!

baras@isr.umd.edu
301-405-6606

http://www.isr.umd.edu/~baras

Questions?

http://www.isr.umd.edu/~baras
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