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Community/Module/Compartment Identification

• social web communities
• semantic groupings
• predicting node labels

• functional modules (biology)
• etc.



Newman-Girvan modularity

• observed within-module density vs.                 
expected within-module density

• degree-preserving random graph as null model

• finding “good” partition = optimize Q over partitions

• de facto standard (1431+ Google Scholar citations;     
n.b., many other techniques exist)
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Newman-Girvan modularity

• NP-hard, but many heuristics work well in practice:
• greedy agglomeration
• mathematical programming
• spectral optimization
• extremal optimization
• simulated annealing
• sampling (MCMC, etc.)
• ...
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Brandes et al. 2008, Newman 2004, Clauset et al. 2004, Blondel et al. 2008, Agarwal and Kempe 2008, Newman 2006, 
Richardson et al. 2009, Duch and Arenas 2005, Guimera and Amaral 2005, Massen and Doye 2006, Sales-Pardo et al. 2007



Newman-Girvan modularity

• In practice, three common assumptions:

1. global maximum is the “best” partition
2. modular networks have clear, global maximum
3. high-modularity partitions structurally similar

• All three are wrong.
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This talk:

1. Is the maximum the “best” partition?
2. A clear global maximum?
3. How many high-modularity partitions?
4. Is the modularity function smooth?
5. How similar are high-modularity partitions?



1. Is the maximum the “best” partition?
      Consider merging two strong modules (e.g., cliques)
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Fortunato and Barthelemy 2007, Kumpula et al. 2007, Branting 2008, Berry et al. 2009

Q

eij > E[eij ]i.e.,

1. Is the maximum the “best” partition?
      Consider merging two strong modules (e.g., cliques)

Merging always favored when

Thus,              won’t distinguish modules i and j           
and       exhibits a “resolution limit”



1. Two examples of the resolution limit
      



1. A first example
      A “ring” of k cliques of c nodes each
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1. A first example
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1. A first example
      A “ring” of k cliques of c nodes each

When merging adjacent cliques:

For                and            :

Each clique in a group,

Pairs of cliques together,
Q1 = 0.8674
Q2 = 0.8712
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1. A second example
      A “ring” of k cliques of c nodes each

      where                                  and 
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1. A second example
      A “ring” of k cliques of c nodes each

When merging adjacent cliques:

Thus, no resolution limit. Why?

only for k ≤ 2
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1. A second example
      A “ring” of k cliques of c nodes each

When merging adjacent cliques:

Thus, no resolution limit. Why?

Recall:                                  and 

ji

∆Q =
2

k(k − 1)
[(c

2

)
+ 1

] − 2k−2 ∆Q > 0

eij = 2/(k − 1) E[eij ] = O(k−1)

only for k ≤ 2



1. Take home messages

1. Resolution limit not universal
• Appears mainly in large, unweighted networks

2.      measures deviations from random graph model

3. Res. limit = clash between intuition and definition

4. Appears in most other objective functions                                 
(e.g., Potts models, likelihood functions, etc.)
• Need alternatives; local methods?
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eij = O(1) E[eij ] = O(k−1)where                         but 



2. A clear, global maximum?
      Consider merging two strong modules
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2. A clear, global maximum?
      Consider merging two strong modules

For roughly balanced groups                         , and

Thus, these partitions have

di ≈ 2m/k

∆Qij ≥ −2k−2
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2. An example
      A “ring” of k cliques of c nodes each

For                and            :

Each clique in a group:

Pairs of cliques together:
Q1 = 0.8674
Q2 = 0.8712

∆Q = −0.0038

c = 5k = 24



3. How many high-modularity partitions?



3. How many high-modularity partitions?

2k−1 ≤ C

≤ C



3. How many high-modularity partitions?

Exponentially many (or more) high-modularity 
(degenerate) solutions.

2k−1 ≤ C ≤ Bk (kth Bell number)

≤ C ≤



4. Is the modularity function smooth?



4. Is the modularity function smooth?

1. choose a network

2. sample many high modularity partitions                         
(e.g., via simulated annealing)

3. embed them in 2D Euclidean space,                    
such that pairwise distances are preserved                               
(e.g., via curvilinear component analysis)



4. Is the modularity function smooth?

(“ring” network)



5. How similar are high-modularity partitions?

1. choose a real-world network                     
(metabolic network for spirochaete T. pallidum)

2. sample many high modularity partitions                         
(via simulated annealing)

3. for each partition, merge all but k’ largest 
modules; compute mean pairwise distance as 
function of k’: 〈d(C1, C2)〉k′

k’



5. How similar are high-modularity partitions?

k 9 8 7 6 5 4 3 2 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of largest modules preserved, k’

F
ra

c
ti
o
n
 o

f 
m

e
a
n
 p

a
ir
w

is
e
 d

is
ta

n
c
e

 

 

Empirical network

Randomized network

1 9 18 27
0

0.3

0.7

1

C
D

F

Number of groups

for T. pallidum



Conclusions:



Conclusions:

1. modularity function is highly degenerate
• degeneracies appear in other score functions, including local 
methods and generative models
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Conclusions:

1. modularity function is highly degenerate
• degeneracies appear in other score functions, including local 
methods and generative models

2. more modular = more degenerate
• degeneracies are caused by choice of null model

3. good partitions easy to find
• exponential in number

4. but they’re structurally different
• any one partition should not be trusted

5. thus, optimization alone is misleading
• we need to combine information across many solutions.

6. we need new approaches

Good, de Montjoye and Clauset “The performance of modularity maximization in practical contexts.”
Physical Review E (2010).    arxiv:0910.0165


