Explosive percolation in random graphs

Raissa D'Souza University of California, Davis

Dept of Mech. and Aero. Eng., Dept of CS Complexity Sciences Center

External Professor, Santa Fe Institute

Networks are ubiquitous:

Networks:

Transportation Networks/ Power grid

collection networks)

Biological networks

- protein interaction
- genetic regulation
- drug design

Computer networks

(distribution/

Social networks

- Immunology
- Information
- Commerce

A collection of interacting networks

Modeling networks as random graphs

- Erdős and Rényi random graphs (1959, 1960). Phase transition.
- Configuration models (Bollobas 1980, Molloy and Reed *RSA* 1995). Enumerating over all networks with specified $\{p_i\}$.

- Preferential attachment (de Sola Price 1976, Barbási-Albert Science 1999, etc). Equilibrium model.
- Growth by copying (Kumar, Raghavan, Rajagopalan, Sivakumar, Tomkins, Upfal FOCS 2000), including duplication/mutation (Vazquez, Flammini, Maritan, Vespignani, ComPlexUs 2003)
- Many more . . .

Building a random instance of a network

- P. Erdős and A. Rényi, "On random graphs", Publ. Math. Debrecen. 1959.
- P. Erdős and A. Rényi, "On the evolution of random graphs", *Publ. Math. Inst. Hungar. Acad. Sci.* 1960.
- E. N. Gilbert, "Random graphs", Annals of Mathematical Statistics, 1959.

```
0000000
                 \bigcirc
                       0 0
                  \bigcirc
                          \bigcirc
                         \bigcirc
                               \circ \circ \circ \circ
                                 \circ \circ \circ
                      \circ \circ
                  0 0 0 0 0 0
             \bigcirc
          \circ \circ \circ \circ
                                 \circ \circ \circ
                  \bigcirc
                               \bigcirc
                                        \cap \cap
                                                           \circ \circ
          0 0
                       \bigcirc
                                  \bigcirc
                                          \bigcirc
                                             \bigcirc
                                                         \circ
                   \bigcirc
                                                        \bigcirc
\bigcirc
                                                      \bigcirc
                                        \bigcirc
                                             \bigcirc
                               \overline{0}
                           \bigcirc
```

- \bullet Start with N isolated vertices.
- Add random edges one-at-a-time. E = N(N-1)/2 total edges possible.
- After \mathcal{E} edges, probability p of any edge is $p = \mathcal{E}/E = 2\mathcal{E}/N(N-1)$

What does the resulting graph look like?

(Typical member of the ensemble)

N=300

$$p = 1/400 = 0.0025$$

p = 1/200 = 0.005

Emergence of a "giant component"

Branching process (Galton-Watson); "tree"-like at $t_c = 1$.

Phase transitions

Abrupt change in fundamental property of a system in response to slight change in controlling variable

- $T < T_c$, **discontinuous jump** in thermodynamic quantity (*e.g.*, Volume, V)
- $T = T_c$, continuous change in V, but derivatives $\left(e.g., \frac{\partial V}{\partial P}\right)$ diverge.
- (For $T > T_c$, "supercritical fluid" state)

Universality classes I

Discontinuous – "first order"

- Phase coexistence / Latent heat
- Finite length scales

Universality classes II: Continuous – "second order" Scaling behaviors

- Diverging correlation lengths and response functions.
- Heat capacity: $C_v = \frac{\partial E}{\partial T}\Big|_v \sim |T T_c|^{-\alpha}$
- Isothermal compressibility: $\kappa_T = -\frac{1}{V} \frac{\partial V}{\partial P} \Big|_T \sim |T T_c|^{-\gamma}$
- Magnetic susceptibility: $\chi = \frac{\partial m}{\partial h} \sim |T T_c|^{-\gamma}$

"Mean field" Ising and van der Waals gas $\rightarrow \gamma = 1$.

(Thermodynamic properties depend only on a small number of features – dimensionality, symmetry – insensitive to underlying microscopic properties)

Erdős-Rényi – second order phase transition

- t < 1, $C_{\max} \sim O(\ln n)$
- t = 1, $C_{\max} = n^{2/3}$
- t > 1, $C_{\max} \sim An$, with A > 1
- The critical window Bollobás, Trans. Amer. Math. Soc., 286 (1984).
 Luczak, Random Structures and Algorithms, 1 (1990).

• Mean field critical exponents e.g., Grimmett, *Percolation*. 2nd Edition. Springer-Verlag. 1999.

$$\chi \sim (t_c - t)^{-\gamma}$$
, with $\gamma = 1$.

where χ is the expected size of the component to which an arbitrarily chosen vertex belongs.

Erdős Rényi random graph: A continuous phase transition

рN

 $(\epsilon = 0.0005)$

Connectivity – good or bad?

• Communications, Transportation, Synchronization, ...

versus

• Spread of human or computer viruses

Can any limited perturbation change the phase transition?

[Bohman, Frieze, *RSA* **19**, 2001] [Achlioptas, D'Souza, Spencer, 2009]

- Possible to Enhance or Delay the onset?
- The "Product Rule"
 - Choose two edges at random each step.
 - Add only the desirable edge and discard the other.

• The Power of Two Choices

Azar; Broder; Mitzenmacher; Upfal; Karlin;

ProdRule: Explicit example

- **Prod** $e_1 = (7) \times (2) = 14$
- **Prod** $e_2 = (4) \times (4) = 16$
- To enhance choose e_2 . To delay choose e_1 .

Product Rule

Delayed Product Rule: Discontinuous change

 $\epsilon = 0.0005$

The window Δ from $n^{1/2}$ to 0.5n

- Let e_0 denote the last edge added for which $C_{max} < n^{1/2}$. (Recall ER has $n^{2/3}$ at p_c .)
- Let e_1 denote the first edge added for which $C_{max} > 0.5n$.

PR From $n^{1/2}$ to 0.5n in number of edges that is sublinear in n.

Bounding t_c , where t = e/n(Note, for ER, $t_c = 1/2$)

- For $t < t_c$, $C_{\max} < n^{1/2}$.
- For $t > t_c, C_{\max} > 0.5n$.

Jumps "instantaneously" from $C_{\text{max}} = n^{1/2}$ to 0.5n.

"Explosive Percolation in Random Networks"

From n^{γ} to greater than 0.6n "instantaneously"

 C_{\max} jumps from sublinear n^{γ} to $\geq 0.5n$ in n^{β} edges, with $\beta,\gamma<1$.

Nontrivial Scaling behaviors $\gamma + 1.2\beta = 1.3$ for $A \in [0.1, 0.6]$

Achlioptas, D'Souza, Spencer, Science, 323 (5920), 2009

A Hybrid Transition! Diverging correlation length, I

The second largest component, C_2

$$C_2 \sim (t_c - t)^{-\gamma}$$
, with $\gamma \approx 1.15$

(No simple corrections to scaling yield mean field $\gamma = 1$)

Product Rule: Diverging correlation length, II

 "Susceptibility", the expected size of the component to which an arbitrarily chosen vertex belongs,

$$\chi = \frac{1}{n} \sum_{v \in V(G)} |C(v)| = \frac{1}{n} \sum_{components} |C_i|^2.$$

 $\chi \sim (t_c - t)^{-\gamma}$, with $\gamma \approx 1.17$

r

r_c-r

Explosive percolation now observed in ...

• R. Ziff, *Phys. Rev. Lett.* 103, 045701 (2009).

"Explosive Growth in Biased Dynamic Percolation on Two-Dimensional Regular Lattice Networks"

- Y. S. Cho, J. S. Kim, J. Park, B. Kahng, D. Kim, *Phys. Rev. Lett.* 103, 135702 (2009). "Percolation Transitions in Scale-Free Networks under the Achlioptas Process" (Chung-Lu weighted node power law growth model)
 - $p_c > 0$ for $\gamma > 2.3$ or 2.4 and discontinuous.
- F. Radicchi, S. Fortunato *Phys. Rev. Lett.* 103, 168701 (2009). "Explosive percolation in scale-free networks" (Configuration model power law)
 - $p_c > 0$ for $\gamma > 2.2$, discontinuous for $\gamma > 3$.
- E. J. Friedman, A. S. Landsberg *Phys. Rev. Let.* 103, 255701 (2009). "Construction and Analysis of Random Networks with Explosive Percolation"
- Y.S. Cho, B. Kahng, D. Kim; *Phys. Rev. E* (R), 2010. "Cluster aggregation model for discontinuous percolation transition"
- Rozenfeld, Gallos, Makse; arxiv:0911.4082
 "Explosive Percolation in the Human Protein Homology Network"

Beyond "Product Rule"

- "Sum rule" also works, but delay is smaller.
- In general any rule that keeps components similar in size in subcritical regime should be explosive:
 - "Powder Keg" of Friedman and Landsberg PRL (2009).
 - Starting ER from proper initial state; Cho, Khang, Kim PRE (2010).

Rank

Rigorous techniques only for bounded size (thus far)

- Bounded size rules (treat all components of size $\geq K$ as the same)
- Assume cluster aggregation models (two distinct clusters merged with each edge addition).
- "Birth Control for Giants",
 - J. Spencer, N. Wormald, *Combinatorica* **27**(5), 2007 :
 - Differential equation for evolution
 (rigorous proof that error term is small in subcritical regime)
 - Conjecture that all bounded size rules have continuous PT's

Local Cluster Aggregation Models with Explosive Percolation

(R.D. and M. Mitzenmacher, Phys. Rev. Lett., in press.)

• "Adjacent Edge (AE)" – 2 candidate edges share a common vertex.

• "Triangle Rule" (TR) – choose 3 vertices at random, 3 candidate edges.

Locality: more physical and simplifies analytic treatment

Adjacent Edge Rule (3 components)

VS

Product Rule (4 components)

(TR also depends only on 3 components)

Evolution equations for the bounded size AE rule:

• Let x_i denote fraction of nodes in components of size i, for $1 \le i \le K$.

• Let
$$S_i = \sum_{j=i}^{\infty} x_j$$

(the weight in the tail starting at size i
 $(S_{K+1} = 1 - \sum_{j=1}^{K} x_j$ is useful)

- Probability first node is in component of size i is x_i .
- Probability the smaller of the two additional components has size j is $S_j^2 S_{j+1}^2$.
- Expected evolution of x_i 's:

$$\frac{dx_i}{dt} = -ix_i - i(S_i^2 - S_{i+1}^2) + i\sum_{j+k=i} x_j(S_k^2 - S_{k+1}^2)$$

"Susceptibility": $W = \sum_{i=1}^{\infty} i x_i = \sum_{i=1}^{\infty} i^2 n_i$

(Expected size of component to which arbitrary vertex belongs)

The evolution of W:

$$\frac{dW}{dt} = \sum_{j=1}^{K} \sum_{k=1}^{K} 2jkx_j(s_k^2 - s_{k+1}^2) + \sum_{j=1}^{K} 2jW^*x_js_{K+1} + \sum_{k=1}^{K} 2kW^*(s_k^2 - s_{k+1}^2) + 2(W^*)^2s_{K+1}.$$

- Where $W^* = W \sum_{i=1}^{K} ix_i$ (contributions from comps of size greater than *K*).
- $W \rightarrow \infty$ at the phase transition. Simple Euler's method numerics yields $t_c = 0.796$ (with K = 600).

Direct simulation of the AE graph evolution process

AE with γ =0.5, A=0.2

• Find agreement to three digits, $t_c = 0.796$.

• Δ sublinear in n, where t_0 is last time $C_1 \leq n^{\gamma}$, and t_1 first time $C_1 \geq An$. (Denote this by $\Delta(\gamma, A)$)

(For AE $\Delta(0.5, 0.2)$ sublinear. For PR $\Delta(0.5, 0.6)$ sublinear.)

AE, PR, TR are Hybrid Transitions! (Discontinuous change, but scaling behavior)

- Component density $n_i \sim i^{-\tau}$
- $W \sim |t t_c|^{-\alpha}$
- $C_2 \sim |t t_c|^{-\mu}$

	PR	AE	TR
t_c	0.888	0.796	0.848
τ	2.1	2.1	2.1
α	1.17	1.13	1.13
$\mid \mu \mid$	1.17	1.13	1.13

Other Hybrid Transitions

- **k-sat** (constraint satisfaction) for $k \ge 3$, Infinite dimensional (Monasson, Zecchina, Kirkpatrick, Selman, Troyansky, *Nature*, 1999)
- Jamming in models of granular materials
 Finite dimensional / spatial constraints

(OHern, Langer, Liu, Nagel, *Phys. Rev. Lett.* 2002) (Henkes, Chakraborty, *Phys. Rev. Lett.* 2005) (Toninelli, Biroli, Fisher, *Phys. Rev. Lett.* 2006) (Schwarz, Liu, Chayes, *Europhys. Lett.* 2006)

 Spin glasses glassy systems, slow relaxation time (D. Gross and M. Mezard. *Nucl. Phys. B*, 1984) (Kirkpatrick and Thirumalai, *Phys. Rev. Lett.* 1987)

Mixed transitions: geometry, disorder, computation

• Critical slowing down and computational complexity?

• *Nature* 1999: 2-sat <u>continuous</u> \in P, 3-sat <u>discontinuous</u> \in NP

- Hard instances, applications to Cryptography?
- Aspen Center for Physics: "Complexity, Disorder, and Algorithms" Organizers: S. Coppersmith, A. Middleton, J. Machta, C. Moore May 25 - June 22, 2008.
- American Institute for Mathematics: "Phase Transitions" Aug 21-25, 2006
 Organizers: P. Diaconis, D. Fisher, C. Moore, C. Radin

Mathematical Sciences Research Institute (MSRI)
 "Probability, Algorithms and Statistical Physics"
 Organizers: Y. Peres, A. Sinclair, D. Aldous,
 C. Kenyon, H. Kesten, J. Kleinberg, F. Martinelli,
 A. Sokal, P. Winkler, U. Zwick
 Jan 3 - May 15, 2005.

A collection of interacting networks

Networks:

Transportation Networks/ **Power grid**

Biological networks

- protein interaction
- genetic regulation
- drug design

Computer networks

(distribution/

Social networks

- Immunology
- Information
- Commerce

Modular Erdős-Rényi

• Divide nodes initially into two groups (A and B):

- Add internal a-a edges with rate λ .
- Add internal *b*-*b* edges with rate λ/r_1 , with $r_1 > 1$.
- Add intra-group a-b edges with rate λ/r_2 , with $r_2 > 1$, $r_2 \neq r_1$.

What happens? (Anything different?)

Percolation on interacting networks, using random graph models

(E. Leicht and R. D'Souza, arXiv:0907.0894)

System of two networks

Connectivity for an individual node

- Probability distribution nodes in network *a*: $p_{k_ak_b}^a$
- For the the system: $\{p^a_{k_ak_b}, p^b_{k_ak_b}\}$
- Build generating function formalism for interacting networks.

Generating Functions – Distribution of component sizes:

(Extending Newman, Strogatz, Watts PRE 64, (2001))

Three step process:

- 1. G.F. for connectivity of a node connected to a random edge, $G_{ab}(x_a, x_b)$.
- 2. G.F. for the size of the component to which that node belongs, $H_{ab}(x_a, x_b)$.
- 3. G.F. for the size of the component to which an arbitrary node belongs, $H_a(x_a, x_b)$.

Moments of GFs provide information, e.g., the expected number of *a*-nodes in the component of an arbitrary *a*-node:

$$\langle s_a \rangle_a = \frac{\partial}{\partial x_a} H_a(x_a, x_b) \Big|_{x_a = x_b = 1}$$

Distributions for modular Erdős-Rényi

- $p^a_{k_ak_b} = p^a_{k_a}p^a_{k_b}$ (uncorrelated)
- Independent Poisson distributions with related means:

 $\overline{k}_{bb} = \frac{1}{r_1} \overline{k}_{aa},$ $\overline{k}_{ab} = \overline{k}_{ba} = \frac{1}{2r_2} \overline{k}_{aa}.$ $p_{k_a k_b}^a = \frac{\overline{k}_{aa} \frac{k_a}{k_a} e^{-\overline{k}_{aa}}}{k_a!} \cdot \frac{\overline{k}_{ab} \frac{k_b}{k_b} e^{-\overline{k}_{ab}}}{k_b!}$ $p_{k_a k_b}^b = \frac{\overline{k}_{bb} \frac{k_b}{k_b} e^{-\overline{k}_{bb}}}{k_b!} \cdot \frac{\overline{k}_{ba} \frac{k_a}{k_a} e^{-\overline{k}_{ba}}}{k_a!}$

$$\langle s_a \rangle_a = 1 + \frac{\overline{k}_{aa} - \overline{k}_{aa} \overline{k}_{bb} + \overline{k}_{ab} \overline{k}_{ba}}{(1 - \overline{k}_{aa})(1 - \overline{k}_{bb}) - \overline{k}_{ab} \overline{k}_{ba}}$$

(Bollobas, Janson, Riordan *RSA*, 2007 Ostilli, Mendes *J Stat Mech* 2009)

Wiring which respects group structures percolates earlier!

aa rate λ

bb rate λ/r_1 , w/ $r_1 = 2$

ab rate λ/r_2 , w/ $r_2 = 6$

Other distributions

- Approximates two loosely coupled human contact networks.
- Giant component is larger for *L*2.

Other distributions, cont.

- Approximates critical infrastructure:
 - power grid nodes having narrow degree distribution.
 - Internet routers have broad degree distribution.

Statistical signatures of interacting networks: (How and when do they differ from random or each-other?)

• Socio-technical congruence (e.g., Open Source Software)

• Searching for biomarkers of disease:

GENOME

protein-gene interactions

PROTEOME

protein-protein interactions

METABOLISM

Bio-chemical reactions

Explosive percolation in random graphs – Conclusions

- Controlling phase transitions with choice
 - Delay or enhance
 - Changing speed of onset
 - Changing universality classes
 - Including locality
- Network interactions
 - Can change the onset of phase transitions
 - Modular treatments can percolate sooner

(or later, depending on specifics of degree distributions involved)

- Random graphs and real-world networks
 - Can the differences serve as diagnostic tools?

