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This is primarily joint work with my long-term collaborator Eric Justh and my Ph.D. students
Kevin Galloway, and Matteo Mischiati.

Geometric methods in control theory have had a useful role in the investigation of
problems of collective behavior. In this talk, we discuss recent progress in understanding
nonlinear phenomena in small networks governed by feedback control laws that fall in the
category of pursuit laws. We also examine applications of these ideas to biological
networks.



Bracken emergence

www.batcon.org

The question of what mechanisms underlie the ability of large columns of bats to emerge
and hunt insect prey in a coherent and seemingly organized manner remains an open and
interesting one. There are many superlatives associated with this — very large numbers,

long duration of flight (dusk-to-dawn), altitude, quantity of insects consumed, jamming
avoidance, etc.



Theme

* in the animal kingdom, Pursuit is associated
with play (competitive), predation (aggressive)
and mating (non-cooperative); it can also be a
building block of collaborative/social behavior

* This talk is about pursuit (in which labeled
individuals, aware of labels, move according to
a cyclic directed graph of interaction) and the
resulting spatio-temporal patterns

This talk is based on the idea that pursuit is a useful and perhaps essential building block
for achieving collective spatio-temporal behavior in the animal kingdom, on many length
scales. It is recognizable as a mechanism in a variety of individual behaviors including play,
predation and mating. It is mediated by a variety of (active) perceptual modes, including
vision, audition, biosonar, somato-sensation, and (collective) sensing of gradients of
chemical or nutrient concentrations.



Pursuit in the 19t century and before

Pursuit has an interesting early history in recreational mathematics.
The problem of a pirate ship chasing a merchant ship.
Classical pursuit curve
Cyclic pursuit

The problem of 3 bugs (mice, dogs,...)

The Mathematics

of Pursuit and Evasion

Classical pursuit stimulated a number of papers using calculus-based mathematics, many in
the category of recreational mathematics. But it became serious business in WWII.

Paul Nahin’s excellent and entertaining book captures the mathematical spirit underlying
classical pursuit, cyclic pursuit and other related modern developments.

The problem of 3 bugs each pursuing the one to its left under strict classical pursuit pre-
occupied some writers. For initial positions at the vertices of a triangle (or regular polygon)
and all bugs moving at constant speed, there is a common meeting point.



Cyclic Pursuit

Klamkin, Newman (1971): Three bugs problem

Bruckstein, Cohen, Efrat (1991): Ants, crickets, frogs

Richardson (2001): Non-mutual capture

Lin, Broucke, Francis (2004): Cyclic pursuit to achieve multi-agent formations (linear formulation)

Marshall, Broucke, Francis (2004): Nonlinear dynamics (linear feedback law); proof of relative
equilibria; local stability analysis

Smith, Broucke, Francis (2005): Introduces hierarchical scheme

Marshall, Broucke, Francis (2006): Incorporates speed control

Sinha, Ghose (2007): Heterogeneous formations (differing speeds and controller gains)
Smith, Broucke, Francis (2007): Application to curve-shortening and rendezvous problem

Pavone, Frazzoli (2007): Coverage

Following the initial excitement over pursuit problems in the literature on recreational
mathematics, a more modern view based on control-theoretic questions began to emerge.
Bugs were replaced by robots.



Outline

Modeling interactions

L]

Strategies and steering laws

Symmetry, shape, and reduction

Special solutions

Mutual CB pursuit
Mutual MC Pursuit

Graph-theoretic techniques are useful, but we focus in this talk on some nonlinear
dynamics.



Modeling Interactions in 3D

The natural curvatures are controls. The speeds are time functions dictated by
propulsive/lift mechanisms.
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The flight behavior of a bat or a bird, or for that matter an insect is the end result of
interaction between (visual, auditory, olfactory, somatosensory, and inertial) sensing, and
actuation of a complex network of muscles, mediated by the rapid and learned responses
of the neural control substrate. The overwhelming richness of detail present in this
feedback loop and in the physics of a multiple-degrees-of-freedom animal needs to be
abstracted to the right level in seeking answers to questions such as, - What individual
behaviors govern collective cohesion? What is the structure of interaction between
individuals within a collective? What organizations within a flock enable effective
transmission of information across a flock? Based on the results of our prior work on 3D
trajectory modeling and analysis of motion camouflage and echolocating bats (Justh and
Krishnaprasad 2005; Reddy et. al. 2006, 2007; Reddy 2007; Wei et. al. 2009), we argue that
a description with the right level of complexity for modeling an individual in a flock or a
swarm is the Newtonian particle model.

The figure presents two particle trajectories as curves with frames, one for the
evader/target (denoted as e) and one for the pursuer (denoted as p). The curvatures u and
v are controls. The speeds denoted by Greek letter nu are decided by propulsive/lift
considerations.

This representation of individual trajectory dynamics is known as the natural frame
representation, made better known through a well-known paper of R. L. Bishop (1975).
Instead of writing Newton’s equations as “ma = f”, we are making explicit the role of
curvature/steering controls as inputs.
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The speed nu_i of each particle may be taken as a time function. Here it is treated as a
constant = 1. The state space M_state is the product of n copies of the group SE(2) of rigid
motions in the plane minus a set of collision states. Only collisions between particles with
consecutive labels are excluded.
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Strategies as constraint manifolds
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We define a control strategy as the specification of a constraint manifold in the joint state
space of the pursuer (p) and the target (e). We suggest some typical pursuit strategies.
Classical pursuit is the constraint of heading straight for the target.
Constant bearing pursuit is heading for the target with a fixed lead or lag (angle alpha).
In 3D we need a cone condition.

Motion camouflage (with respect to infinity) is a stealthy pursuit, nulling motion parallax,
suggested by the trajectories of dragonflies.
Motion camouflage with respect to infinity is the same as a strategy adopted by bats in
pursuit of insects. In that context, we refer to it as the constant absolute target direction
strategy (CATD).
A pursuer executes a feedback law that (approximately) fulfills the specification -

Pursuer reaches an epsilon neighborhood of a constraint manifold in finite time;

Pursuer converges to constraint manifold asymptotically.
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Motion Camouflage (MC)

% o Mandyam Srinivasan

Srinivasan and Davey (1995), Proc. Roy. Soc. Lond. B 259(1354):19-25
Mizutani, Chahl and Srinivasan (2003), Nature, 423:604

The pursuer (p) moves in such a way that the moving pursuee/target (e) thinks (p) is co-
located with a familiar, stationary object (q). Motion camouflage at infinity refers to the
case where the object (q) is at infinity. We idealize, p, e and q as points. The idea that
insects execute such movement strategies was put forward by Srinivasan and Davey
(hoverflies), Mizutani, Chahl and Srinivasan (dragonflies).
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Examples in Nature

Dragonflies engaged in territorial batties (MC)

Single echolocating bat hunting prey (MC)
Ghose et. al. (2006), PLoS Biol., 4(5):865-873
Two bats engaged in competition for prey (CP)
Chiu (2008), Ph.D. thesis (advisor: C. Moss)

Peregrine falcon stoop (CB)
Tucker et. al. (2000), JEB, 203:3755-3763

[ ]

Recall from notes in previous two slides.

The story about single echolocating bat is based on laboratory studies (Cynthia Moss,
Kaushik Ghose, Timothy Horiuchi) and analysis (Viswanadha Reddy, Eric Justh, and PSK) —in
PLoS Biology (2006) and Reddy’s M.S. thesis (2007).

The story about two bats engaged in competition for prey was first investigated in the Ph.D.
thesis of Chen Chiu (2008). Recent analysis, submitted to the Journal of Experimental
Biology, reveals that a CP constraint appears to hold during the periods when a bat follows
another bat instead of heading towards a mealworm.

The peregrine falcon has two foveae (deep and shallow). The deep fovea has higher acuity
while the shallow fovea is equipped for stereopsis. In the stoop maneuver, initially the deep
fovea is used, later trading acuity for target localization. The spiral stoop is consistent with
CB pursuit of a fixed target. Aerodynamic drag considerations also are involved.
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Steering laws for pursuit
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E. Wei, EW. Justh, and P.S. Krishnaprasad, “Pursuit and an evolutionary game”, Proc. R. Soc. A
(London), Vol. 465, pp. 1539-1559, May 2009.

PV. Reddy, E.W. Justh, and P.S. Krishnaprasad, “Motion camouflage in three dimensions”, Proc. 45"
IEEE Conf. Decision and Control, pp. 3327-3332, 2006.

The control laws for classical pursuit and constant bearing pursuit include in them a
(second) term that corresponds to motion camouflage. For a faster pursuer, these two laws
drive the state asymptotically to the specified constraint manifold.; the control law for
motion camouflage drives the state to an epsilon neighborhood of the states satisfying the
motion camouflage (with respect to infinity) constraint.

Feedback laws that incorporate sensorimotor delays are also known and have been
analyzed
(Reddy, Justh and Krishnaprasad (2007), Proc. 46t IEEE Conference on Decision and
Control).

Extensions to three dimensions are known. (Galloway, Justh and Krishnaprasad, 2010,
submitted).
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Symmetry, shape, and reduction

Astate
Reduction by symmetry group
SE(2) l

‘ﬁ"fsta.te_/SE(2) :”shape space” or

“reduced space”

Shape variables Cbe = X; - Xit1, Tir1
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With the pursuit laws for CB and MC, the closed loop dynamics is invariant under the
diagonal action of the rigid motion group SE(2); hence one can reduce to the quotient

manifold or shape space. The given shape variables give a complete description of the
shape space.
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invariant steering
law u;

Closed-loop
dynamics under CB
cyclic pursuit

Slhape dynamics
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Here we use the expressions for CB cost functions and steering laws obtained from

expressing various dot products in terms of shape variables.
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An invariant submanifold
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Proposition: M, ¢B-(a) is invariant under the CB closed-
loop dynamics.
(Proof follows from the fact that Ai = —; (1 - Af) under CB
closed-loop dynamics.)
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Richardson’s dynamics are confined to the CP manifold defined by setting all the alpha’s =
0.

Reduced dynamicson M ;,...: c - ()

bi = —v; "i ((] — ¢;)sin(a;) — (‘()H(t’.l‘,‘)) - “1 ((] — ¢ip1)sin(aip1) — Yisr cos(aipg }ﬂ
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Pi Pi+1
3{ - U,
Si == 0,
pi = —(1—¢;)cos(a;) — y;sin(e;), i=1,2,...,n
dloa) o)
J\”{Joint CB~ (a)
Bi = — cos(q;)
0; = —sin(ay)
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Relative equilibria

Rectilinear Circling

ay = 7/4 | ap =7/10
ay =7/4 ag = /10
ag = /4 ag =1/5
ay = 7/4 ay = 3m/10
as = b /4 as = 37/10

Equilibria of the shape dynamics correspond to relative equilibria of the full system
dynamics. Systems of the form discussed in this paper admit only two types of relative
equilibria: rectilinear and circling. It is not automatic that relative equilibria of particular
type exist under CB (alpha) pursuit. The choice of alphas dictates which if any relative
equilibria are selected.



Existence of relative equilibria

Proposition: Given {ay,as,...,a,}, a relative equilib-
rium corresponding to rectilinear motion on M ;i ¢ B~ ()
exists for the given closed-loop dynamics under ucp(a) if
and only if there exists a set of constants {o1,09,...,0,}
such that o; >0, 1 =1,2,...,n and

Z crz-ej(“'*) =0.
i=1

Proposition: Given {ay,as,...,a,}, a relative equilib-
rium corresponding to circling motion on a common orbit
on M joint B~ (a) €Xists for the given closed-loop dynamics
under ucp(q) if and only if

i. sin(a;) >0 Vie {1,2,...,n} or sin(a;) <0 Vie {1,2,...,:

1. sin (f: a?;) =0.

\i=1 /

Alpha = multibearing (alpha_1, alpha_2,...,alpha_n)
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Concepts of “shape”

1. Relative states (i.e. positions and
velocities) of particles (Justh, PSK)

2. Relative configuration of particle positions
with a concept of size (Jacobi)

3. Relative configuration of particle positions
without a concept of absolute size
(Kendall) ra. A 1

a ITi—Tig|  op

- |1‘s+1 - I‘-a'+2| - Pi+1 ’

Pi

Here we wish to make contact with other notions of shape. The basic ideas in the context
of the n-body problem go back to Jacobi, who gave us the Jacobi vector parametrization.
Statisticians prefer to separate absolute size from shape. Recall congruent triangles (same
triple of angles, same ratios of side lengths).



Other special solutions

-Invariant “pure shape”, but varying size

X3
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Invariant pure shape

Proposition: Assume 3 a constant angle 7 € [0,27) such that
{aq, ag, ..., a,} satisfy the following properties:
i. sin(a; —7) >0 Vie{1,2,...,n}
or sin(ey; —7) <0 Vie{l,2,...,n}
il. sin (—n’r - Z o:.i) =0.
i=1
Let a particular set of pure shape coordinates be specified by

. sin(a; — 7)

Nj = Qi+ Qigr — 2T, pj =

: i=1,2,....n—2.
sin(a; 41 — 7)

Then the submanifold given by M™ ?" (\ M jyint ¢ B (a) 18 invari-
ant under the CB cyclic pursuit. Furthermore, the polygon shapes

sre oxrold

are Cyciic.

o
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n=2 case (mutual CB pursuit)

O = @1 = Po Derived using
By assignment ﬁb - _-81162 - 5152 basis

T=7 = v = —[10y + 613, expansion

Simplified two-particle dynamics
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Stability analysis for n=2 case
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Asymptotic system behavior for n=2

On -Mer‘nt CB~(a)y WE have

Al —
F\v) L

u(t) = % (sin(ay) + sin(as)]

Case p(t); u(t) el + 2 Description
L. pt)=0; u(t) =0 0 rectilinear equilibrium
I1. p(t) =0; u(t) > 0 | positive imaginary axis | CCW circling equilibrium
III. | p(t) =0; u(t) <0 | negative imaginary axis CW circling equilibrium
IV. | p(t) <0; u(t)=0 positive real axis “straight flight rendezvous”
V. plt) > 0; u(t) =0 negative real axis “straight flight retreat”
VL. | p(t) < 0; u(t) >0 quadrant I CCW “inward sweep”
VIL | p(t) > 0; u(t) >0 quadrant II CCW “outward sweep”
VIIL | p(t) > 0; u(t) <0 quadrant IIT CW “outward sweep”
IX. | p(t) <0; u(t) <0 quadrant IV CW “inward sweep”
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(a) Case It Rectilinear equilib- (b) Case II: CCW circling (c) Case III: CW circling equi-

rium (7 /3, 47/3) equilibrium (7/2, 7/2) librium (57 /4, Tr/4)
d _
! » == ==
? N y
| J
g - R "

(d) Case IV: “Straight flight (e) Case V: “Straight flight re- (f) Case VI: CCW “inward

rendezvous” (7/4, Tn/4) treat” (m, 7) sweep” (7/8, 37/8)
‘! ”,.-' S | ol /—\ .
f—r— 4 —-\ I |
..! \m..___,_/ 1 wf 1 . ‘\\_ ______ ”,r"

(g) Case VII: CCW “outward (h) Case VIII: CW “outward (i) Case IX: CW “inward 20
sweep” (27/3, 27/3) sweep” (br/6, Tr/4) sweep” (5r/3, 57 /3)
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Remark

 Stability of many particle version of CB pursuit
and the 3D setting are being investigated. In
the 3D setting CB pursuit is parametrised by
cone angles. Double helices and conchospirals
arise in the 2 particle case.
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Dynamics in Mutual MC Pursuit

Here g=x,-vx, and h=y —vy,.

r ooy = r
| 7] | 7]

Let A=

g and p=r|.

Note u=—-uA.
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Symmetries and Reduction

P=Y7

Y=L )
P

Here we have used the conservation law

v+ 17 =6".
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Discrete Symmetry

In fact, Birkhoff's theorem applies, and all orbits are periodic.
The “energy integral”

E(p,y)=p’ (0" = y*)exp(-2up)
implies a Poisson bracket

exp(24,
(p.y) = - SRCL)

2p°

G. D. Birkhoff (1915), The restricted problem of three bodies, Rend. Circ. Mat.
Palermo, vol. 39, 265-334.

Birkhoff : Given a system reversible under an involution (i.e. the push forward of the
dynamics under the involution is the time reversal of the dynamics), and S is the fixed point
set of the involution, if an orbit through a point of the set S has the property that it
intersects S at another point , then it is a periodic orbit.



Phase Portrait of Reduced System
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