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Classic Voter Model Clifford & Sudbury (1973) 
Holley & Liggett (1975)
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Example update:

2. Assume state of randomly-selected neighbor
individual has no self-confidence & adopts neighbor’s state



2. Assume state of randomly-selected neighbor
individual has no self-confidence & adopts neighbor’s state
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0. Binary voter variable at each site i

3. Repeat 1 & 2 until consensus necessarily occurs in             
a finite system

1. Pick a random voter
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rule

Classic Voter Model Clifford & Sudbury (1973) 
Holley & Liggett (1975)



random initial condition:

 Voter Model Evolution Dornic et al. (2001)

t=4 t=16 t=64 t=256

droplet initial condition:

t=4 t=16 t=64 t=256



Evolution of a single 
active link:

1/2

1/2

average 
magnetization 
conserved

 Lattice Voter Model:  3 Basic Properties
1. Final State (Exit) Probability E(ρ0) = ρ0

2.  Two-Spin Correlations 
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3. Consensus
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pick site on 
a sublattice

pick ↑on b 
sublattice

pick ↓ 
on a

Voter Model on Complex Networks

magnetization not conserved
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illustrative example: 
complete bipartite graph

degree a

a sites
degree b

b sites

Subgraph densities: ρa = Na/a, ρb = Nb/b dt = 1/(a + b)

ρa,b(t) =
1

2
[ρa,b(0) − ρb,a(0)] e−2t +

1

2
[ρa(0) + ρb(0)]

→

1

2
[ρa(0) + ρb(0)]
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Voter Model on Complex Networks

high degree; few nodes   
     → changes rarely

low degree; many nodes 
    → changes often

“flow” from high degree to low degree



conserved!

New Conservation Law

high degree
→ changes rarely

low degree
→ changes often

nk = frac. nodes of degree k

ρk = frac. ↑ on nodes of degree k

µ1 = av. degree

degree-weighted 
1st moment:

ω =
1
µ1

�

k

k nkρk

to compensate different rates, consider:



Exit Probability on Complex Graphs
E(ω) = ω

Extreme case: star graph
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N nodes: degree 1
1  node:  degree N

Final state: all 1 with prob. 1/2!

ω =
1
µ1
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Route to Consensus on Complex Graphs

complete bipartite graph

degree a

a sites
degree b

b sites
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Consensus Time Evolution Equation

T (ρ) = R(ρ)[T (ρ + dρ) + dt]
+L(ρ)[T (ρ− dρ) + dt]
+[1−R(ρ)− L(ρ)][T (ρ) + dt]

warmup:  complete graph
T (ρ) ≡ av. consensus time starting with density ρ



Consensus Time Evolution Equation
warmup:  complete graph
T (ρ) ≡ av. consensus time starting with density ρ

R(ρ) ≡ prob(↓↑→↑↑)
= ρ(1− ρ)ρ

T (ρ) = R(ρ)[T (ρ + dρ) + dt]
+L(ρ)[T (ρ− dρ) + dt]
+[1−R(ρ)− L(ρ)][T (ρ) + dt]

1

R

ρ0



Consensus Time Evolution Equation
warmup:  complete graph
T (ρ) ≡ av. consensus time starting with density ρ

R(ρ) ≡ prob(↓↑→↑↑)
L(ρ) ≡ prob(↑↓→↓↓)

= ρ(1− ρ)
ρ

T (ρ) = R(ρ)[T (ρ + dρ) + dt]
+L(ρ)[T (ρ− dρ) + dt]
+[1−R(ρ)− L(ρ)][T (ρ) + dt]

1

RL

0



Consensus Time Evolution Equation
warmup:  complete graph
T (ρ) ≡ av. consensus time starting with density ρ

R(ρ) ≡ prob(↓↑→↑↑)
L(ρ) ≡ prob(↑↓→↓↓)

= ρ(1− ρ)
ρ

T (ρ) = R(ρ)[T (ρ + dρ) + dt]
+L(ρ)[T (ρ− dρ) + dt]
+[1−R(ρ)− L(ρ)][T (ρ) + dt]

1
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1−R−L

0



Consensus Time on Complete Graph

continuum limit: T �� = − N

ρ(1− ρ)

T (ρ) = −N [ρ ln ρ + (1− ρ) ln(1− ρ)]

solution:

T (ρ) = R(ρ)[T (ρ + dρ) + dt]
+L(ρ)[T (ρ− dρ) + dt]
+[1−R(ρ)− L(ρ)][T (ρ) + dt]



Consensus Time on Heterogeneous Networks

T ({ρk}) ≡ av. consensus time starting with density ρk

on nodes of degree k

T ({ρk}) =
�

k

Rk({ρk})[T ({ρ+
k }) + dt]

+
�

k

Lk({ρk})[T ({ρ−k }) + dt]

+
�
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�
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Lk({ρk}) = nkρk(1− ω)Rk({ρk}) = prob(ρk → ρ+
k )

=
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= nkω(1− ρk)



continuum limit:
�

k

�
(ω − ρk)
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Consensus Time on Heterogeneous Networks
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continuum limit:
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now use ρk → ω ∀k
∂
∂ρk

= ∂ω
∂ρk

∂
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∂
∂ωand
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Consensus Time on Heterogeneous Networks



Consensus Time for Power-Law Degree

]
fast (<N)
consensus

nk ∼ k
−νDistribution

TN ∝ Neff = N
µ2

1

µ2
∼






N ν > 3
N/ lnN ν = 3
N2(ν−2)/(ν−1) 2 < ν < 3
(lnN)2 ν = 2
O(1) ν < 2
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randomly-selected voter changes to any 
other state equiprobably (rate T)

majority-minority interaction:  minority 
preferentially changes to majority (rate r)

Ȧ = T (B + c− 2A) + r Ac

Ḃ = T (c + A− 2B) + r Bc

ċ = T (A + B − 2c) − r (A + B)c

rate equations (A, B majority; c minority):

Strategic  Voter Model D. Volovik, M. Mobilia, SR
EPL 85, 48001 (2009)



Phase Portrait

b
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regular 3-state 
voter model
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Phase Portrait

strategic 3-state 
voter model
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Slow Switching



1935 1945 1955 1965 1975 1985
year

0

20

40

60

%
 o

f v
ot

e

Conservative
Liberal
NDP/CC

(b)

1830 1860 1890 1920 1950 1980 2010
year

0

20

40

60

%
 v

ot
e

Liberal
Conservative
Labor (a)

British election results since 1830 Canadian election results since 1935



1. Pick voter, pick neighbor (as in usual voter model);

2a. If initial voter becomes happy by   
     adopting neighboring state, 
     change occurs with rate 1+ε; 1+ε

2b. If initial voter becomes unhappy by 
     adopting neighboring state, 
     change occurs with rate 1-ε. 1-ε

partisan voting update:

happy 
republican
density Rh

sad 
republican
density Rs

sad 
democrat
density Ds

happy 
democrat
density Dh

Partisan  Voter Model N. Masuda, N. Gibert, SR
arXiv:1003.0768



Ḋh = 2� DhDs + (1 + �) DsRs − (1− �) DhRh

Ḋs = −2� DhDs + (1− �) DhRh − (1 + �) DsRs

rate equations:

and R↔ D

Partisan  Voter Model: Mean-Field Limit



H ≡ Dh + Rh

= density of happy voters

Symmetric Case:   D=R=½

∆ ≡ Dh −Rh = Dh − ( 1
2 −Rs) = ρ− 1

2
= density democratic voters − 1

2

H

H=0

CC
Δ=0

1

Δ
1/2−1/2

S



Consensus Time on Finite Graphs
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Summary & Outlook
Voter model: 

paradigmatic, soluble, (but hopelessly naive)

Voter model on complex networks:
new conservation law
meandering route to consensus
fast consensus for broad degree distributions

Future:  
“churn” rather than consensus
heterogeneity of real people
positive and negative social interactions → social balance

Extensions:
strategic voting → minority suppressed 
partisan voting  → selfishness forestalls consensus



Crass Commercialism
Aimed at graduate students, this book explores some of the core

phenomena in non-equilibrium statistical physics. It focuses on the

development and application of theoretical methods to help

students develop their problem-solving skills.

The book begins with microscopic transport processes: diffusion,

collision-driven phenomena, and exclusion. It then presents the

kinetics of aggregation, fragmentation and adsorption, where the

basic phenomenology and solution techniques are emphasized. The

following chapters cover kinetic spin systems, both from a discrete

and a continuum perspective; the role of disorder in non-

equilibrium processes; hysteresis from the non-equilibrium

perspective; the kinetics of chemical reactions; and the properties of

complex networks. The book contains 200 exercises to test students'

understanding of the subject. A link to a website hosted by the

authors, containing supplementary material including solutions to

some of the exercises, can be found at

www.cambridge.org/9780521851039.
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Cover illustration: Snapshot of a collision cascade in a perfectly elastic hard-
sphere gas in two dimensions due to a single incident particle. Shown are the
cloud of moving particles (red) and the stationary particles (blue) that have not
yet experienced any collisions. Figure courtesy of Tibor Antal.
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