
1© 2005 HRL Laboratories, LLC.  All Rights Reserved

Continuous-Time ∆Σ Modulators for RF 
Applications

Joe Jensen
Todd Kaplan 

HRL Laboratories, LLC

April 14 2005



2© 2005 HRL Laboratories, LLC.  All Rights Reserved

RF I/QTuneable
BP

Filter
I/Q

Digital

I/Q and

Video Filter

ADC Dec. Filter

DIGITAL
DATA

10 GHz

I/QBP
Filter

I/Q
Ref

LP
Filter

LP
Filter

ADC

ADC

Digital
Video Filter

BP
Filter

Phase
Split

LO1 LO2

RF

10 GHz 1 GHz
0.06 GHz

ADCs in Digital Receivers:
Towards the “Software Radio”

Conventional Receiver

BP
Filter

RF I/Q

LO

Digital
I/Q and

Video Filter
ADC

10 GHz

DIGITAL
DATA

DIGITAL
DATA

Trend - Eliminate Downconversion

Advantages:

– Digital robustness

– frequency agility

– Lower I/Q Images

– Better Channel Match

– Flexibility with communication 
standards

– More Deg of Freedom

Challenges:

– ADC needs enormous dynamic 
range

– Enormous data reduction 
needed in DSP

Digital IF Receiver

Digital RF Receiver
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Issues in Moving ADC forward in 
Signal Path in Digital Receivers

• High ADC sample rates required
– High input bandwidth and fast settling needed for sub-sampling 

approaches
– Direct sampling requires higher sample rate than the IF or RF being 

sampled
• High ADC dynamic range required

– Interfering signals in digital receiver are blocked after the ADC
– Additional ADC dynamic range is need to replace blocking filters and  

AGC functions 
• ADC limitations

– Increasing the sample rate of ADCs decreases the ADC dynamic 
range

– Digital receiver requirements stress ADC fundamental limits

Ultra-Fast IC technology will have a major 
impact on Digital Receiver Technology
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Fundamental Principles Oversampling

1 BIT 
QUANTIZER MULTIBIT 

QUANTIZER
Maximum Error

Maximum
Error

Linearity:
• Linearity of multibit quantizer

determined by accuracy of voltage 
thresholds (process uniformity) 

• 1 - Bit quantizer ( = Comparator )
– Inherently linear

• 1-Bit quantizer increases 
quantization noise

Resolution:
Oversampling ( = Averaging ) 
• Improves Resolution @ 3 dB / Octave
• Requires High Speed Technology
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Very High Oversampling Required for Practical Applications
• 10 bit, 50 MHz Requires Comparator Clocked @ 12.5 THz !!

Practical Realization : Add loop filter to shape noise 
and improve performance.
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Bandpass ∆Σ Noise Shaping for 
Digital Receiver Applications

Conventional Oversampling ADC
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Principle of bandpass ∆Σ modulation

A/D converter
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∆Σ modulator
• A/D converter is put inside a feedback loop
• Quantizer error is reduced by the gain of the feedback loop

Advantages:  Unmatched resolution for high-IF digitization

Disadvantages:  The DAC and input resonator still require full 
dynamic range of final desired output
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Continuous Time ∆Σ vs. Discrete Time ∆Σ

• Clock rate
– SC DT ∆ΣM  maximum clock rate is limited by op amp 

bandwidth
– maximum clock rate ~ fT/100

– CT ∆ΣM relax the restriction on op amp bandwidth
– maximum clock rate ~ fT/20

• Switching Transients
– SC DT ∆ΣM have larger switching transients than CT ∆ΣM

• Aliasing
– SC DT ∆ΣM require separate filter at their inputs to attenuate 

aliases sufficiently
– CT  ∆ΣM have free anti-aliasing

– antialiasing is an inherent property of the mathematics of 
CT ∆ΣM
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Design Approach for Continuous Time Modulators

Available Devices in High Speed Bipolar Technology
• NPN transistors
• Resistors: Thin Film 50Ω /sq, Base Epi 800 Ω /sq
• Capacitors: Metal-Insulator-Metal 

Consequences
• Low OpAmp Voltage Gain (typ < 100)
• No Simple Positive Current Sources or Active Loads 
• No Switched Capacitors

Design Approach
• Continuous Time Integrators 
• Transimpedance Amplifiers
• Fully Differential Circuitry to Minimize Noise Coupling  
• Current-Mode Logic Minimizes Switching Noise
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InP HBT ∆Σ Modulator Implementation

Basic Approach: High impedance 
current drive in a feedback 
integrator

• Tolerant of low amplifier gain
• Low voltage swing at input to 

integrating capacitors 
minimizes integrator leakage

• Allows current-summing for 
dac summing node

• Requires positive bias current 
source 

Input transconductance cell outside 
feedback loop-determines overall 
circuit linearity
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Transconductance Cell 
Saturation Characteristic
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Integrator Design
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• Differential amplifier with gain, 
A and feedback capacitors, C

• Low frequency gain 
determines the noise floor of 
∆Σ modulator near DC

• Low frequency gain limited by 
ARC, where R is the effective 
resistance as seen at the 
current summing node
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Finite Tranimpedance Gain Limits Noise 
Floor
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Positive Current Source
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Positive current source needs to supply the current for the Gm cell and DAC
The effective resistance of the positive current source determines the overall 
transimpedance gain (ARC)
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Asymmetric Rise and Fall Times

• Ideal DAC waveform: average 
value of alternating sequence is 
zero

• Equal nonzero rise and fall times: 
average value of an alternating 
sequence is zero

• Asymmetric rise and fall times: 
alternating single pulses dc value 
not equal to zero

• Asymmetric rise and fall: 
alternating pairs of pules has dc 
value different from alternating 
single pules
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Symmetric Rise and Fall Times
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• Symmetric finite rise and fall 
times do not effect the 
integrated area of the pulse 
train

• Balanced differential signals 
are inherently symmetric even 
if the individual components 
are asymmetric
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InP HBT 2nd Order ∆Σ Modulator

Block Diagram
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∆Σ Output Spectrum (0 to 1.5 GHz)

3.2 GHz Sample Rate

DARPADARPA

Joe Jensen
(310) 317-5250
jfjensen@hrl.com

slide #17



18© 2005 HRL Laboratories, LLC.  All Rights Reserved
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Lead-lag network required for 180o phase.

Resonator Sensitivity to Interconnect 
Delay - Q-Tuning Circuit
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Resonator response is 
sensitive to Ri. Need tunability Redraw  resonator

Frequency and Q can 
both be tuned by 
varying a gm
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4th Order Bandpass ∆Σ Modulator 
Continuous Time Architecture
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• Improves stability
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Feedforward Architecture 

Advantages of Feedforward Architecture
• Only one feedback DAC is required to be fed to the noise-

shaping loop
• Less harmonic distortion ??? Better IMD
• Less sensitive to circuit imperfection
• Can handle more input signal power

– Better saturation recovery response
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Enhanced Performance
Lower Power

Lower Size & Weight
Lower Cost

IF Sampling Receiver
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Passive versus Active Gm-C Resonators

Advantages
– Small size for lower frequencies
– Electronically Tunable

Disadvantages
– Higher noise figure 
– Low Linearity
– Higher Power Dissipation
– Frequency range limited to < fT/20

Advantages
– Lower Noise Figure
– High Linearity
– Higher Frequency Operation
– Lower Power

Disadvantages
– Harder to electronically tune
– Large size for low 

frequencies < 500 MHz

CLK

C1 C2
C3

Z-1

C4

gmf1 g mf2

gmx1 gmx2

x(t)

y(k)

D/AD/AD/AD/A

gma0

Comparator
gmx21

CLK

C1 C2
C3

Z-1

C4

gmf1 g mf2

gmx1 gmx2

x(t)

y(k)

D/AD/AD/AD/AD/AD/AD/AD/A

gma0

Comparator
gmx21

Active GM-C 4th Order Passsive L-C 4th Order



24© 2005 HRL Laboratories, LLC.  All Rights Reserved
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Multi-bit ∆Σ Modulators

Advantages
– High resolution over wider bandwidth
– Increased stability for high order ∆Σ modulators
– Reduced sensitivity to DAC timing errors

Disadvantage
– Resolution limited by multi-bit DACs element mismatch and linearity
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Q-tuned internal LC resonators (Q ~=  10)
No mismatch shaper
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Multibit DAC Mismatch Errors
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• Moves DAC mismatch errors away from signal
• Eliminates spurs caused by DAC mismatches
• Enables high resolution signal generation using a multi-bit DAC

DAC Mismatch Shaping
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Conclusions

• Bandpass ∆Σ modulation is an ideal ADC architecture 
for digital receivers
– Elimination of downconversion stages and analog 

IF filters
– Improved I and Q matching 
– Improved performance with digital modulaton

schemes
– Improved flexibility with communication standards
– Reduction of size, weight, power, and cost for 

multimode receivers


