
U Maryland, April 13, 2005

Progressive Halftoning via
Perona-Malik Diffusion and Stochastic Flipping

Jackie Shen
jhshen@math.umn.edu
University of Minnesota
Minneapolis, MN 55455

www.math.umn.edu/~jhshen

Work is Partially Supported by NSF DMS-0202565

mailto:jhshen@math.umn.edu
mailto:jhshen@math.umn.edu
http://www.math.umn.edu/~jhshen

U Maryland, April 13, 2005

Organization

A Quick Overview of Existent Halftoning Methods
Prelude: Diffusion-Based Spatial Regularization

The New Model:
Perona-Malik Diffusion and Edge Adaptivity
Stochastic Flipping
Progressive Halftoning

Computational Examples

U Maryland, April 13, 2005

Popular Error-Diffusion Based Halftoning

Witten & Neal’82: Peano Curve
Floyd & Steinberg’76: Rastering

& Vaidyanathan’00:

Numerous Improvements by
Allebach’s Purdue Group: 00-04

and by many many other authors

D. Knuth’87: Dot Diffusion:
Path Defined by Class Matrix

Mese
Optimal Knuth’s Path Matrix

U Maryland, April 13, 2005

Random Field View of Halftoning

uα

bα=1 bα=0

bα

A given mage u determines a random field b.
A natural Constraint is

E[bα] = uα, at each pixel α.

The marginal bα is subject to Bernoulli B(1, p). Then
E [bα] = 1xp + 0x(1-p) =p.

Simplest binary random field: independent B(1, uα)’s.

Random Field View of Images: Geman-Geman’84; Mumford-Zhu’97

U Maryland, April 13, 2005

Independent Bernoulli Halftoning: Not So Pleasant

Pro: fast and parallelizable

Con: losing spatial coherence

Lesson:
Images are coherent spatial
patterns; vital for perception
Points (or the “spins”) should
respect such visual regularity

Question:
How to characterize spatial
regularity?

[Independent Bernoulli Halftoning]

U Maryland, April 13, 2005

Spatial Homogeneity of Points: Blue vs. Red
Consider a constant shade (a)

u = 0.1
Ideally 10% on’s and 90% off’s

Consider a 9x9 square
About 81x10%=8 on’s.
Spatial homogeneity (c) looks more
visually pleasant than unwanted
clustering (b).

Scientific Support:
Importance of Blue Noise (Ulichney’88)

Clustering δ(x) Red Noise

(a)

9

9

(b)

(c)

U Maryland, April 13, 2005

Points as a Borel Measure (or Delta Terrain)

x1 xn

Given n points (x1, …, xn) in a domain Ω, first form
a delta (spiky) terrain (or a delta train in 1-D):

φ0(x) = δ(x-x1)+…+ δ(x-xn).

Or, rather, form a Borel (or Radon) measure, s.t.
<f, dφ0> = f(x1)+…+f(xn), for any test fcn f(x).

Then the correspondence is one-to-one (i.e., a
lossless representation).

U Maryland, April 13, 2005

Diffusion of a Delta Terrain

Diffuse the delta-terrain

With some suitable stopping time τ, the
terrain is mollified to φτ(x)= φ(x,τ), which
is a function, instead of a measure.

In terms of fundmental solutions,

φ(x,τ)= Σi=1:n G(x,τ; xi).

1
2

0

, ;

(, 0) ();

0, along .

x
x
x x

φ φ

φ φ
φ
ν

∂ = ∆ ∈ Ω ∂
=

 ∂ = ∂Ω
∂

φ0(x)

x1

φτ(x)

x4

U Maryland, April 13, 2005

Points Renormalization: Centroidal Extraction

φτ(x)

V1 V2 V3

V1 V3

V2

σ

Thresholding and region extraction: V={ x: φτ(x) > σ } ;
(In 2-D, the threshold can be σ =e-1/(π τ).
Connected components extraction: V=V1 U V2 … U Vm.
Centroidal points extraction: zk=masscenter(Vk); (A
technique used in Centroidal Voronoi Tessellation).
Point loss due to merging (that is desired !!):

S={x1, …, xn} Z={z1, …, zm}, m =< n.

U Maryland, April 13, 2005

Point Rebirth and Conservation

Where and HOW to deposit the n-m new points:
a. Let Vc =Ω\V be the complement pixel domain.
b. Set probability p = (n –m) / # Vc.
c. Draw a random UNIFORM i.i.d. field F on Vc.
d. Add any pixel β of Vc into Z iff Fβ < p.
e. (minor deterministic correction if necessary).

Repeat the diffusion process on the new set Z…

Adding n-m new z’s.

V3V1

V2
Vc

z1 z3

z2

z4

z5

U Maryland, April 13, 2005

Halftoning Real Images
11

Real images are not constant. The above points
manipulation is not straightforward globally.

Change of Mind Set:
Keep: the diffusion idea (& path independent)
Dump: windowing and thresholding

Features of the New Model:
No windows, no paths, and no hard thresholding
Progressive
Parallelizable
Combining deterministic and stochastic processes

U Maryland, April 13, 2005

Fast Forward (A): Error Diffusion

Given: b=(bα)-current halftone field of u = (uα).

Instead of the preceding diffusion and regularization
process on b, one diffuses the error field

e = u –b; eα = uα – bα, α in Ω.
Let Pτ denote the diffusion operator, and e(τ)=Pτ e.

If halftoning is already satisfactory, then
uα = E[bα] ~= <bα> (spatial) ~= (Pτ b)α;

eα(τ) = Pτ (u – b)α ∼= 0.

|eα(τ)| characterizes how good b has been.

U Maryland, April 13, 2005

Fast Forward (B): Info of Diffused Error e(τ)

POSITIVE error eα(τ) ∼= uα - α > 0:
over-off near α turn on more pixels.

NEGATIVE error eα(τ) ∼= uα - α < 0:
over-on near α turn off more pixels.

Conclusion:
Use eα(τ) to update the halftone b bnew.

Questions for (A) and (B):
(A) how to diffuse? (B) how to update?

U Maryland, April 13, 2005

New Model/Algorithm: PM-SF

Answers to the previous two questions:

A. Diffusion: Perona-Malik Diffusion, e=u-b,
e(τ)= PM(e | u, τ).

Why: Edge-adaptive; diffusion only within patches.

B. Updating: Stochastic Flipping (based on e(τ))
bnew= SF(b | e(τ), f),

where f is a randomly drawn i.i.d. reference field.

The entire progressive halftoning process:
1. Starting with any initial guess b0; e= u-b0 ;

2. PM-diffusing the error e to e(τ) ;
3. Updating b0 to b1 by stochastic flipping; and repeat.

U Maryland, April 13, 2005

Flow-Chart of the New Model: Progressive PM-SF

U Maryland, April 13, 2005

Segmented Halftoning is Ideal but Costly
16

V2

V1

Example: A bright full moon against a dimmer sky:
Ideally, FIRST segment V1 (moon) and V2 (background),
And THEN apply halftoning to each homogeneous patch.

Challenge: For real complex images, segmentation is
challenging, computationally expensive, and slow.

Solution: As far as DIFFUSION is concerned, Perona-Malik
(1990, PAMI) is a simple and effective solution !

U Maryland, April 13, 2005

Perona-Malik’s Anisotropic Diffusion (1990)
Key: Edge Signature Function:

PM Nonlinear Diffusion:

Effective Action:
- No mess-up among objects;
- Sharp edges are NOT smeared.

D=g(p2)

()
2

2

2

1
1 | |2

| |
2

(| |)
e x p

a u

u
D g u

σ

+ ∇

∇


= ∇ = 

−

2

0

(| |)

(, 0)

u
t g u u

u x u

∂
∂

  = ∇ ∇ ∇  
=

i

p=|grad u|

1

D~=1

D~=1
D~=0

edge

U Maryland, April 13, 2005

Perona-Malik Error Diffusion: en(τ)= PM(en | u, τ).

At step n, suppose
halftone image: bn

halftone error: en = u – bn.

Given image u: information source of edges/objects

How to CONFINE error diffusion within each object:

How to conciliate digital & analog views: u(x) vs. uα
Develop self-contained variational/PDE models on discrete
graphs, as in Chan-Osher-Shen (IEEE Trans. I.P., 2001).
Analogous to the spectral graph theory (Chung & Yau, 1994)

2(| |)

(, 0)

e
t

n

g u e

e x e

∂
∂

  = ∇ ∇ ∇  
=

i

U Maryland, April 13, 2005

Stochastic Flipping bn+1= SF(bn | en(τ)),

After PM error diffusion, the diffused error is en(τ).

To minimize changes/achieve statistical convergence,
first copy bn+1 from bn.

From Slide “Fast Forward (B),” qualitatively,

en
α(τ) > 0 over off turn on more pixels

en
α(τ) < 0 over on turn off more pixels

Challenge: What’s the quantitative rule?

pixels β’sα

uβ

bn
β(τ)

en
α(τ)

U Maryland, April 13, 2005

Turning/Flipping Rate (positive error case)

Take a local imaginary window W.
IDEALLY : #on’s = #W x uα.

ACTUALLY : #on’s = #W x <bn>α = #W x bn
α(τ)

SHORT of on’s: #W x [uα− bn
α(τ)] = #W x en

α(τ)

TURNING rate (from the off’s):

pixels β’sα

uβ

bn
β(τ)

en
α(τ)

local window W (for the analysis only)

() # ()#on's short of
#off's in W # () # 1 ()

n n

n n

e W ep
W b W e u

α α

α α α

τ τ
τ τ

+ = = =
− + −

U Maryland, April 13, 2005

Flipping Rates (both positive & negative errors)
21

(from the preceding slide) off on turning rate:

Similarly, when en
α(τ) < 0, on off turning rate:

In the stochastic view of turning/flipping:

Prob(bn+1
α=1 | bn

α=0 and en
α(τ)>0) = p +

Prob(bn+1
α=0 | bn

α=1 and en
α(τ)<0) = p -

() # ()#on's short of
#off's in W # () # 1 ()

n n

n n

e W ep
W b W e u

α α

α α α

τ τ
τ τ

+ = = =
− + −

[()]# ()#off's short of
#on's in W () # ()

n n

n n

e W ep
b W u e

α α

α α α

τ τ
τ τ

− − −
= = =

−

U Maryland, April 13, 2005

Flipping Rates (cont’d)

(from the
preceding
slide)

() (), .
1 () ()

n n

n n

e ep p
e u u e

α α

α α α α

τ τ
τ τ

+ − −
= =

+ − −

define a univariate function: for any real x,

regardless of the sign of errors, one has

p+-=pα(en
α(τ)) := pn

α.

Computational implementation is very simple (next) …

0
0

() , logic variable 1 =True(0)
1 x

x

xp x x
x uα

α
≥

≥

= ≥
+ −

U Maryland, April 13, 2005

Matlab Implementation: bn+1= SF(bn | en(τ))

Prob(bn+1
α=1 | bn

α=0 and en
α(τ)>0) = pn

α

Prob(bn+1
α=0 | bn

α=1 and en
α(τ)<0) = pn

α

Matlab Codes for bn+1= SF(bn | en(τ), f), (version I):
Draw any i.i.d. random field f of Uniform(0,1).
bn+1=bn;

bn+1(en(τ)>0 and bn=0 and f < pn)=1; % turning on

bn+1(en(τ)<0 and bn=1 and f < pn)=0; % turning off

Simplification (version II):
bn+1(en(τ)>0 and f < pn)=1; % turning on

bn+1(en(τ)<0 and f < pn)=0; % turning off

U Maryland, April 13, 2005

The Entire Progressive Algorithm PM-SF
24

Inputs: a given contone image u, stopping time τ.
Initial halftone: b0.
For n=0, 1, 2, …

Current halftone error: en = u – bn;

PM (Perona-Malik diffusion): en(τ)=PM(en | u, τ);
SF (stochastic flipping): bn+1= SF(bn | en(τ)).

Main Features:
Object-adapted halftoning without explicit segmentation
No artificial mosaics, windows, paths, or thresholds
Parallel implementation is straightforward

U Maryland, April 13, 2005

Analysis

Definition. [Flipping Rate Per Pixel (frpp)]
At each step n, the frpp Rn (a random variable) is defined by

Theorem 1. At each step n, the expected frpp is given by

Theorem 2. Suppose the given image u takes values from
[δ, 1-δ] for some 0<δ<1. Then,

1

1
11 | |

| |

n n
n n nl

b b
b b

N M α αα

+

+
∈Ω

−
= = −

Ω ∗ ∑R

[0,1]

1E[] (sign(())) ; () ().
| | 1n n n nb e p t tα α αα

χ τ χ
∈Ω

= + =
Ω ∑R

1()
E[] .

| |

n
n l

e τ

δ
≤

Ω
R

U Maryland, April 13, 2005

Computational Examples (I)

U Maryland, April 13, 2005

Computational Examples (II)

U Maryland, April 13, 2005

Stochastic Convergence: frpp at each step
(for the preceding Lenna image)

U Maryland, April 13, 2005

Blue Noise Feature: Constant Image u=0.35
- 4

U Maryland, April 13, 2005

Blue Noise Feature: Constant Image u=0.5

U Maryland, April 13, 2005

Acknowledgments

Center of Scientific Computing and Mathematical
Modeling (CSCMM) at U. Maryland, founded by
Eitan Tadmor.

Ron DeVore (USC), Ingrid Daubechies (Princeton),
Sinan Güntürk (Courant), and Chai-Wah Wu (IBM)

Gil Strang (MIT), Tony Chan and Stan Osher
(UCLA), David Mumford and Stu Geman (Brown)

NSF, Division of Mathematical Sciences

	Progressive Halftoning via Perona-Malik Diffusion and Stochastic Flipping
	Organization
	Popular Error-Diffusion Based Halftoning
	Random Field View of Halftoning
	Independent Bernoulli Halftoning: Not So Pleasant
	Spatial Homogeneity of Points: Blue vs. Red
	Points as a Borel Measure (or Delta Terrain)
	Diffusion of a Delta Terrain
	Points Renormalization: Centroidal Extraction
	Point Rebirth and Conservation
	Halftoning Real Images
	Fast Forward (A): Error Diffusion
	Fast Forward (B): Info of Diffused Error e(t)
	New Model/Algorithm: PM-SF
	Flow-Chart of the New Model: Progressive PM-SF
	Segmented Halftoning is Ideal but Costly
	Perona-Malik’s Anisotropic Diffusion (1990)
	Perona-Malik Error Diffusion: en(t)= PM(en | u, t).
	Stochastic Flipping bn+1= SF(bn | en(t)),
	Turning/Flipping Rate (positive error case)
	Flipping Rates (both positive & negative errors)
	Flipping Rates (cont’d)
	Matlab Implementation: bn+1= SF(bn | en(t))
	The Entire Progressive Algorithm PM-SF
	Analysis
	Computational Examples (I)
	Computational Examples (II)
	Stochastic Convergence: frpp at each step
	Blue Noise Feature: Constant Image u=0.35
	Blue Noise Feature: Constant Image u=0.5
	Acknowledgments

