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Organization

A Quick Overview of Existent Halftoning Methods
Prelude: Diffusion-Based Spatial Regularization

The New Model:
Perona-Malik Diffusion and Edge Adaptivity
Stochastic Flipping
Progressive Halftoning

Computational Examples
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Popular Error-Diffusion Based Halftoning

Witten & Neal’82: Peano Curve
Floyd & Steinberg’76: Rastering

& Vaidyanathan’00: 

Numerous Improvements by 
Allebach’s Purdue Group: 00-04

and by many many other authors

D. Knuth’87:     Dot Diffusion:
Path Defined by Class Matrix

Mese
Optimal Knuth’s Path Matrix 
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Random Field View of Halftoning

uα

bα=1 bα=0

bα

A given mage u determines a random field b.
A natural Constraint is 

E[bα] = uα, at each pixel α.

The marginal bα is subject to Bernoulli B(1, p). Then
E [bα] = 1xp + 0x(1-p) =p.

Simplest binary random field: independent B(1, uα)’s.

Random Field View of Images: Geman-Geman’84; Mumford-Zhu’97



U Maryland, April 13, 2005

Independent Bernoulli Halftoning:  Not So Pleasant 

Pro: fast and parallelizable

Con: losing spatial coherence

Lesson:
Images are coherent spatial 
patterns; vital for perception
Points (or the “spins”) should 
respect such visual regularity

Question:
How to characterize spatial 
regularity?

[Independent Bernoulli Halftoning]
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Spatial Homogeneity of Points: Blue vs. Red
Consider a constant shade (a)

u = 0.1  
Ideally 10% on’s and 90% off’s

Consider a 9x9 square
About 81x10%=8 on’s. 
Spatial homogeneity (c) looks more 
visually pleasant than unwanted 
clustering (b).

Scientific Support:
Importance of Blue Noise (Ulichney’88)

Clustering δ(x) Red Noise

(a)

9

9

(b)

(c)
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Points as a Borel Measure (or Delta Terrain)

x1 xn

Given n points (x1, …, xn) in a domain Ω, first form 
a delta (spiky) terrain (or a delta train in 1-D):

φ0(x) = δ(x-x1)+…+ δ(x-xn).

Or, rather, form a Borel (or Radon) measure, s.t.
<f, dφ0> = f(x1)+…+f(xn), for any test fcn f(x).

Then the correspondence is one-to-one (i.e., a 
lossless representation).
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Diffusion of a Delta Terrain

Diffuse the delta-terrain

With some suitable stopping time τ, the 
terrain is mollified to φτ(x)= φ(x,τ), which 
is a function, instead of a measure.

In terms of fundmental solutions,

φ(x,τ)= Σi=1:n G(x,τ; xi).
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Points Renormalization: Centroidal Extraction

φτ(x)

V1 V2 V3

V1 V3

V2

σ

Thresholding and region extraction: V={ x: φτ(x) > σ } ; 
(In 2-D, the threshold can be σ =e-1/(π τ).
Connected components extraction: V=V1 U V2 … U Vm. 
Centroidal points extraction: zk=masscenter(Vk); (A 
technique used in Centroidal Voronoi Tessellation).
Point loss due to merging (that is desired !!):

S={x1, …, xn} Z={z1, …, zm},   m =< n.
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Point Rebirth and Conservation

Where and HOW to deposit the n-m new points:
a. Let Vc =Ω\V be the complement pixel domain.
b. Set probability p = (n –m) / # Vc.
c. Draw a random UNIFORM i.i.d. field F on Vc. 
d. Add any pixel β of Vc into Z iff Fβ < p.
e. (minor deterministic correction if necessary).

Repeat the diffusion process on the new set Z…

Adding n-m new z’s.

V3V1

V2
Vc

z1 z3

z2

z4

z5
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Halftoning Real Images
11

Real images are not constant. The above points 
manipulation is not straightforward globally.

Change of Mind Set:
Keep: the diffusion idea (& path independent)
Dump: windowing and thresholding

Features of the New Model:
No windows, no paths, and no hard thresholding
Progressive
Parallelizable
Combining deterministic and stochastic processes
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Fast Forward (A):     Error Diffusion

Given: b=(bα)-current halftone field of u = (uα).

Instead of the preceding diffusion and regularization 
process on b, one diffuses the error field 

e = u –b;     eα = uα – bα,  α in Ω.
Let Pτ denote the diffusion operator, and e(τ)=Pτ e.

If halftoning is already satisfactory,  then 
uα = E[bα] ~= <bα> (spatial) ~= (Pτ b)α;

eα(τ) = Pτ (u – b )α ∼= 0.

|eα(τ)| characterizes how good b has been.
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Fast Forward (B): Info of Diffused Error e(τ)

POSITIVE error     eα(τ) ∼= uα - <b>α > 0:
over-off near α turn on more pixels.

NEGATIVE error    eα(τ) ∼= uα - <b>α < 0:
over-on near α turn off more pixels. 

Conclusion: 
Use eα(τ) to update the halftone b bnew.

Questions for (A) and (B):
(A) how to diffuse?    (B) how to update?
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New Model/Algorithm:  PM-SF

Answers to the previous two questions:

A. Diffusion: Perona-Malik Diffusion,   e=u-b,
e(τ)= PM(e | u, τ).

Why: Edge-adaptive;  diffusion only within patches.

B. Updating: Stochastic Flipping (based on e(τ)) 
bnew= SF(b | e(τ), f),

where f is a randomly drawn i.i.d. reference field. 

The entire progressive halftoning process:
1. Starting with any initial guess b0;  e= u-b0 ;

2. PM-diffusing the error e to e(τ) ;
3. Updating b0 to b1 by stochastic flipping;  and repeat.
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Flow-Chart of the New Model: Progressive PM-SF
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Segmented Halftoning is Ideal but Costly
16

V2

V1

Example: A bright full moon against a dimmer sky:
Ideally, FIRST segment V1 (moon) and V2 (background),
And THEN apply halftoning to each homogeneous patch.

Challenge: For real complex images, segmentation is 
challenging, computationally expensive, and slow. 

Solution: As far as DIFFUSION is concerned, Perona-Malik
(1990, PAMI) is a simple and effective solution !
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Perona-Malik’s Anisotropic Diffusion (1990)
Key:   Edge Signature Function:

PM Nonlinear Diffusion:

Effective Action: 
- No mess-up  among objects; 
- Sharp edges are NOT smeared. 

D=g(p2)
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Perona-Malik Error Diffusion: en(τ)= PM(en | u, τ).

At step n, suppose
halftone image: bn

halftone error:   en = u – bn.

Given image u: information source of edges/objects

How to CONFINE error diffusion within each object:

How to conciliate digital & analog views: u(x)  vs. uα
Develop self-contained variational/PDE models on discrete 
graphs,   as in Chan-Osher-Shen (IEEE Trans. I.P., 2001). 
Analogous to the spectral graph theory (Chung & Yau, 1994)
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Stochastic Flipping bn+1= SF(bn | en(τ)),

After PM error diffusion,  the diffused error is en(τ).

To minimize changes/achieve statistical convergence,
first copy bn+1 from bn.

From Slide “Fast Forward (B),” qualitatively,

en
α(τ) > 0 over off turn on more pixels

en
α(τ) < 0 over on turn off more pixels

Challenge: What’s the quantitative rule?

pixels β’sα

uβ

bn
β(τ)

en
α(τ)
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Turning/Flipping Rate (positive error case)

Take a local imaginary window W.
IDEALLY   :  #on’s = #W x uα.

ACTUALLY : #on’s = #W x <bn>α = #W x bn
α(τ) 

SHORT of on’s:   #W x [uα− bn
α(τ) ] = #W x en

α(τ)

TURNING rate (from the off’s):  

pixels β’sα

uβ

bn
β(τ)

en
α(τ)

local window W (for the analysis only)

( ) # ( )#on's short of
#off's in W # ( ) # 1 ( )

n n

n n

e W ep
W b W e u

α α

α α α

τ τ
τ τ

+ = = =
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Flipping Rates (both positive & negative errors)
21

(from the preceding slide) off on turning rate:

Similarly, when en
α(τ) < 0, on off turning rate:

In the stochastic view of turning/flipping: 

Prob(bn+1
α=1 | bn

α=0 and en
α(τ)>0) = p +

Prob(bn+1
α=0 | bn

α=1 and en
α(τ)<0) = p -
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Flipping Rates   (cont’d)

(from the 
preceding 
slide)
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define a univariate function:  for any real x,

regardless of the sign of errors, one has

p+-=pα(en
α(τ) ) := pn

α.

Computational implementation is very simple (next) …
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Matlab Implementation: bn+1= SF(bn | en(τ) )

Prob(bn+1
α=1 | bn

α=0 and en
α(τ)>0) = pn

α

Prob(bn+1
α=0 | bn

α=1 and en
α(τ)<0) = pn

α

Matlab Codes for bn+1= SF(bn | en(τ), f), (version I):
Draw any i.i.d. random field f of Uniform(0,1).
bn+1=bn;

bn+1(en(τ)>0 and bn=0 and f < pn)=1; % turning on

bn+1(en(τ)<0 and bn=1 and f < pn)=0; % turning off

Simplification (version II):
bn+1(en(τ)>0 and f < pn)=1; % turning on

bn+1(en(τ)<0 and f < pn)=0; % turning off
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The Entire Progressive Algorithm PM-SF
24

Inputs: a given contone image u,  stopping time τ.
Initial halftone:  b0.
For n=0, 1, 2, …

Current halftone error:  en = u – bn;

PM (Perona-Malik diffusion):   en(τ)=PM(en | u, τ);
SF (stochastic flipping):    bn+1= SF(bn | en(τ)).

Main Features:
Object-adapted halftoning without explicit segmentation
No artificial mosaics, windows, paths, or thresholds
Parallel implementation is straightforward
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Analysis

Definition. [Flipping Rate Per Pixel (frpp)] 
At each step n, the frpp Rn (a random variable) is defined by

Theorem 1. At each step n, the expected frpp is given by

Theorem 2. Suppose the given image u takes values from 
[δ, 1-δ] for some 0<δ<1. Then,  

1

1
11 | |

| |

n n
n n nl

b b
b b

N M α αα

+

+
∈Ω

−
= = −

Ω ∗ ∑R

[0,1]

1E[ ] ( sign( ( ))) ;       ( ) ( ).
| | 1n n n nb e p t tα α αα

χ τ χ
∈Ω

= + =
Ω ∑R

1( )
E[ ] .

| |

n
n l

e τ

δ
≤

Ω
R



U Maryland, April 13, 2005

Computational Examples (I)
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Computational Examples (II)
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Stochastic Convergence: frpp at each step
(for the preceding Lenna image)
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Blue Noise Feature: Constant Image u=0.35
- 4



U Maryland, April 13, 2005

Blue Noise Feature: Constant Image u=0.5
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