Fast Reconstruction from Interleaved Uniform Samples

Jared Tanner

Stanford University Department of Statistics

April 12, 2005

 \ast in collaboration with Thomas Strohmer

Bandlimited signals, function space for signal transmission

$$f(t) := rac{1}{\sqrt{2\pi}} \int_{-\sigma}^{\sigma} e^{2\pi i w t} F(w) dw, \qquad F(w) \in B_{\sigma}$$

Bandlimited signals, function space for signal transmission

$$f(t) := rac{1}{\sqrt{2\pi}} \int_{-\sigma}^{\sigma} e^{2\pi i w t} F(w) dw, \qquad F(w) \in B_{\sigma}$$

• Sampling (T) induces periodization (T^{-1}) in Fourier space

Bandlimited signals, function space for signal transmission

$$f(t) := rac{1}{\sqrt{2\pi}} \int_{-\sigma}^{\sigma} e^{2\pi i w t} F(w) dw, \qquad F(w) \in B_{\sigma}$$

- Sampling (T) induces periodization (T^{-1}) in Fourier space
- Critical sampling, $T^{-1} = 2\sigma$ allows recovery of F(w), $\chi_{[-\sigma,\sigma]}$

Bandlimited signals, function space for signal transmission

$$f(t) := rac{1}{\sqrt{2\pi}} \int_{-\sigma}^{\sigma} e^{2\pi i w t} F(w) dw, \qquad F(w) \in B_{\sigma}$$

- Sampling (T) induces periodization (T^{-1}) in Fourier space
- Critical sampling, $T^{-1} = 2\sigma$ allows recovery of F(w), $\chi_{[-\sigma,\sigma]}$

Real world applications have only a finite number of samples

Truncation error and oversampling

- Characteristic filter, $\chi_{[-\sigma,\sigma]}$, gives slow approx. first order error

$$\left|f(t)-\sqrt{2\pi}T\sum_{|k|\leq L}f(kT)\operatorname{sinc}(t-kT)
ight|\lesssim (LT-|t|)^{-1}$$

Truncation error and oversampling

• Characteristic filter, $\chi_{[-\sigma,\sigma]}$, gives slow approx. first order error

$$f(t) - \sqrt{2\pi}T \sum_{|k| \leq L} f(kT) \operatorname{sinc}(t - kT) \bigg| \lesssim (LT - |t|)^{-1}$$

▶ Sampling faster, $T < 1/2\sigma$, allows smooth filter, $\Psi(w)$

Fourier domain smoothness yields localization in time domain

Smoothness and localization

- Localization from smooth filter, $|\psi(t)| \leq (2\pi t)^{-s} \|\Psi^{(s)}\|_{L^{\infty}}$
- Filter reconstruction condition

$$\Psi(w) = \left\{ egin{array}{ccc} 1 & |w| \leq \sigma \ 0 & |w| > T^{-1} - \sigma \ ext{smooth connection} & ext{else}, \end{array}
ight.$$

Smoothness and localization

- ▶ Localization from smooth filter, $|\psi(t)| \leq (2\pi t)^{-s} \|\Psi^{(s)}\|_{L^{\infty}}$
- Filter reconstruction condition

$$\Psi(w) = \left\{ egin{array}{ccc} 1 & |w| \leq \sigma \ 0 & |w| > T^{-1} - \sigma \ ext{smooth connection} & ext{else}, \end{array}
ight.$$

- Industry standard, raised cosine, $\frac{1}{2}(1 + cos(w))$
- Compact support and infinitely smooth, Gevrey regularity

$$|\Psi^{(s)}| \leq {\it Const} {(s!)^lpha\over \eta^s} \quad \Rightarrow \quad |\psi(t)| \leq \exp(-lpha(2\pi\eta|t|)^{1/lpha})$$

Smoothness and localization

- ▶ Localization from smooth filter, $|\psi(t)| \leq (2\pi t)^{-s} \|\Psi^{(s)}\|_{L^{\infty}}$
- Filter reconstruction condition

$$\Psi(w) = \left\{ egin{array}{ccc} 1 & |w| \leq \sigma \ 0 & |w| > T^{-1} - \sigma \ ext{smooth connection} & ext{else}, \end{array}
ight.$$

- Industry standard, raised cosine, $\frac{1}{2}(1 + cos(w))$
- Compact support and infinitely smooth, Gevrey regularity

► Fast, *L* log *L* algorithm for *L* samples, exponential accuracy

$Non-uniform\ sampling\ structures$

Non-uniform sampling, low order reconstructions

$Non-uniform\ sampling\ structures$

- Non-uniform sampling, low order reconstructions
- ▶ Uniform interleaved sampling, union of N undersampled sets

effective sampling rate, ${\it T/N},$ oversampling ${\it T/N} < 1/2\sigma$

Non-uniform sampling structures

- Non-uniform sampling, low order reconstructions
- ▶ Uniform interleaved sampling, union of N undersampled sets

effective sampling rate, ${\it T}/{\it N},$ oversampling ${\it T}/{\it N} < 1/2\sigma$

► Fourier space periodization for translated undersampled signal

$$S_{T_n}(w) := e^{2\pi i T_n w} \sum_{l=-\infty}^{\infty} e^{-2\pi i l T_n T^{-1}} F(w - l T^{-1})$$

Non-uniform sampling structures

- Non-uniform sampling, low order reconstructions
- ▶ Uniform interleaved sampling, union of N undersampled sets

effective sampling rate, T/N, oversampling $T/N < 1/2\sigma$

► Fourier space periodization for translated undersampled signal

$$S_{T_n}(w) := e^{2\pi i T_n w} \sum_{l=-\infty}^{\infty} e^{-2\pi i l T_n T^{-1}} F(w - l T^{-1})$$

Can sampling structure be exploited for a fast algorithm?

Can smooth filters be used for exponential accuracy?

Removing the periodization, an example $S_{T_n}(w) := e^{2\pi i T_n w} \sum_{I=-\infty}^{\infty} e^{-2\pi i I T_n T^{-1}} F(w - I T^{-1})$

From N sets cancel N consecutive periodizations, for $w \in I_k$

Removing the periodization, an example

$$S_{T_n}(w) := e^{2\pi i T_n w} \sum_{I=-\infty}^{\infty} e^{-2\pi i I T_n T^{-1}} F(w - IT^{-1})$$

From N sets cancel N consecutive periodizations, for $w \in I_k$

►

Removing the periodization, an example

$$S_{T_n}(w) := e^{2\pi i T_n w} \sum_{I=-\infty}^{\infty} e^{-2\pi i I T_n T^{-1}} F(w - IT^{-1})$$

From N sets cancel N consecutive periodizations, for $w \in I_k$

►

Partitions, an example

• Extract $F_k(w)$ on I_k and splice together to recover F(w)

Smoothness for localization, high order accuracy

Partitions, an example

• Extract $F_k(w)$ on I_k and splice together to recover F(w)

- Smoothness for localization, high order accuracy
- How to determine filter coefficients, $c_{k,n}$?
- How to select partitioning of unity, $\{\Phi(w)\}_{k=1}^{\kappa}$ for $N \gg 1$?

Filter coefficients

$$S_{T_n}(w) := e^{2\pi i T_n w} \sum_{l=-\infty}^{\infty} e^{-2\pi i l T_n T^{-1}} F(w - l T^{-1})$$

From N sets cancel N consecutive periodizations, for $w \in I_k$

$$F_k(w) := \sum_{n=1}^N c_{k,n} S_{T_n}(w) e^{-2\pi i T_n w}$$

$$F_k(w) = F(w) \text{ for } I_k := [(-N+k-1)T^{-1} + \sigma, kT^{-1} - \sigma].$$

Filter coefficients

$$S_{T_n}(w) := e^{2\pi i T_n w} \sum_{l=-\infty}^{\infty} e^{-2\pi i l T_n T^{-1}} F(w - l T^{-1})$$

From N sets cancel N consecutive periodizations, for $w \in I_k$

$$F_k(w) := \sum_{n=1}^N c_{k,n} S_{T_n}(w) e^{-2\pi i T_n w}$$

 $F_k(w) = F(w)$ for $I_k := [(-N + k - 1)T^{-1} + \sigma, kT^{-1} - \sigma].$

• Resulting system of equations for $c(k) = (c_{k,1} c_{k,2} \cdots c_{k,N})^T$

$$\begin{aligned} &AR(k)c(k) = e_{N-k+1}; \quad A_{m,n} := e^{2\pi i T_n T^{-1}m}, \quad m, n = 1, \dots, N, \\ &R(k) := \text{diag}(\gamma_1(k) \cdots \gamma_N(k)), \quad \gamma_n(k) := e^{2\pi i T_n T^{-1}(k-N-1)}. \end{aligned}$$

Partitions

► Largest overlap with $I_{k_j} \cap I_{k_{j+2}} = \emptyset \implies \kappa, k_j$ With effective oversampling rate r := T/N $\kappa := \min \left\lfloor \frac{N+1+r}{N+1-r} \right\rfloor, \quad k_j := \operatorname{round}(j\frac{N+1}{\kappa+1} - N)$

Partitions

- Action on a single uniform undersampled set?
- Partitions and coefficients, $\{c_{k,n}\}_{k=1}^{\kappa}$ determine filter

$$\Psi_n(w) := \sum_{j=1}^{\kappa} c_{k_j,n} \Phi_{k_j}(w)$$

Atomic decomposition

- Extension of Shannon's sampling theorem to bunched samples
- Exact atomic decomposition from bunched samples

$$f(t) = T \sum_{n=1}^{N} \sum_{l=-\infty}^{\infty} f(lT - T_n) \psi_n(t - (lT + T_n))$$

Atomic decomposition

- Extension of Shannon's sampling theorem to bunched samples
- Exact atomic decomposition from bunched samples

$$f(t) = T \sum_{n=1}^{N} \sum_{l=-\infty}^{\infty} f(lT - T_n)\psi_n(t - (lT + T_n))$$

• Characteristic atoms for well separated translates, T_n

Exponentially localized atoms, same as uniform oversampling

Atomic decomposition

- Extension of Shannon's sampling theorem to bunched samples
- Exact atomic decomposition from bunched samples

$$f(t) = T \sum_{n=1}^{N} \sum_{l=-\infty}^{\infty} f(lT - T_n)\psi_n(t - (lT + T_n))$$

Characteristic atoms for well separated translates, T_n

- Exponentially localized atoms, same as uniform oversampling
- Discrete sample algorithm for real world implementation

Algorithm via Filterbank, summary

 $|f(t) - \operatorname{Approx} f(t)| \leq Const \cdot ||A^{-1}|| \exp(-\eta (LT - |t|)^{1/2})$

A note on robustness

Filter coefficient system yields sum of filters fixed

$$\sum_{n=1}^{N} \Psi_{n}(w) = \sum_{n=1}^{N} \sum_{j=1}^{\kappa} c_{n,k_{j}} \Phi_{k_{j}}(w) = \sum_{j=1}^{\kappa} \Phi_{k_{j}}(w),$$

A note on robustness

Filter coefficient system yields sum of filters fixed

$$\sum_{n=1}^{N} \Psi_{n}(w) = \sum_{n=1}^{N} \sum_{j=1}^{\kappa} c_{n,k_{j}} \Phi_{k_{j}}(w) = \sum_{j=1}^{\kappa} \Phi_{k_{j}}(w),$$

► Although *cond*(*A*) may be large, substantial cancellation

A note on robustness

Filter coefficient system yields sum of filters fixed

$$\sum_{n=1}^{N} \Psi_{n}(w) = \sum_{n=1}^{N} \sum_{j=1}^{\kappa} c_{n,k_{j}} \Phi_{k_{j}}(w) = \sum_{j=1}^{\kappa} \Phi_{k_{j}}(w),$$

Although cond(A) may be large, substantial cancellation

Summary and extensions

- ▶ Fast computation, NL log(L) for N sets, L total samples
- Stable under quantization and/or jitter errors
- Extension to images, super-resolution
 - Direct extension via Cartesian products

12 images of size 13×17 , using 6 filters

• Rotations, how to exploit polar structure, fast algorithm?

Thank you for your time

