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Abstract. The White Noise Hypothesis (WNH), introduced by Bennett half century
ago, assumes that in the pulse code modulation (PCM) quantization scheme the errors
in individual channels behave like white noise, i.e. they are independent and identically
distributed random variables. The WNH is key to estimating the means square quanti-
zation error (MSE). But is the WNH valid? In this paper we take a close look at the
WNH. We show that in a redundant system the errors from individual channels can never
be independent. Thus to an extend the WNH is invalid. Our numerical experients also
indicate that with coarse quantization the WNH is far from being valid. However, as the
main result of this paper we show that with fine quantizations the WNH is essentially
valid, in which the errors from individual channels become asymptotically pairwise inde-
pendent, each uniformly distributed in [−∆/2, ∆/2), where ∆ denotes the stepsize of the
quantization.

1. Introduction

In processing, analysing and storaging of analog signals it is often necessary to make

atomic decompositions of the signal using a given set of atoms, or basis {vj}. With the

basis, a signal x is represented as a linear combination of {vj},

x =
∑

j

cjvj .

In practice {vj} is a finite set. Furthermore, for the purpose of error correction, recovery

from data erasures or robustness, redundancy is built into {vj}, i.e. more elements than

needed are in {vj}. Instead of a true basis, {vj} is chosen to be a frame. Since {vj} is a

finite set, we may without loss of generality assume {vj}
N
j=1 are vectors in Rd with N ≥ d.

Let F = [v1,v2, . . . ,vN ] be the d × N matrix whose columns are v1, . . . ,vN . We say

{vj}
N
j=1 is a frame if F has rank d. Let λmax ≥ λmin > 0 be the maximal and minimal
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eigenvalues of FF T , respectively. It is easily checked that

λmin‖x‖
2 ≤

N∑

j=1

|x · vj|
2 ≤ λmax‖x‖

2. (1.1)

λmax and λmin are called the upper and lower frame bounds for the frame, respectively. If

λmax = λmin = λ, in which case FF T = λId, we call {vj}
N
j=1 a tight frame with frame bound

λ. Note that any signal x ∈ Rd can be easily reconstructed using the data {x · vj}
N
j=1. Set

y = [x · v1,x · v2, · · · ,x · vN ]T . Then y = F Tx and

(FF T )−1Fy = (FF T )−1FF Tx = x.

Let G = (FF T )−1F = [u1,u2, . . . ,uN ]. The set of columns {uj}
N
j=1 of G is called the

canonical dual frame of the frame {vj}
N
j=1. We have the reconstruction

x =

N∑

j=1

(x · vj)uj. (1.2)

If {vj}
N
j=1 is a tight frame with frame bound λ, then G = λ−1F , and we have the recon-

struction

x =
1

λ

N∑

j=1

(x · vj)vj . (1.3)

In digital applications, quantizations will have to be performed. The simplest scheme is

the Pulse Code Modulation (PCM) quantization scheme, in which the coefficients {x·vj}
N
j=1

are quantized. In this paper we consider exclusively linear quantizations. Let A = ∆Z where

∆ > 0 is the quantization step. With linear quantization a real value t is replaced with the

value in A that is the closest to t. So, in our setting, t is replaced with Q∆(t) given by

Q∆(t) :=

⌊
t

∆
+

1

2

⌋
∆.

Thus, given a frame {vj}
N
j=1 and its canonical dual frame {uj}

N
j=1, instead of using the data

{x · vj}
N
j=1 and (1.2) to obtain a perfect reconstruction, we use the data {Q∆(x · vj)}

N
j=1

and obtain an imperfect reconstruction

x̂ =
N∑

j=1

Q∆ (x · vj)uj. (1.4)

This raises the following question: How good is the reconstruction? This question has been

studied in terms of both the worst case error and the mean square error (MSE), see e.g. [12].
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Note that the error from the reconstruction is

x − x̂ =
N∑

j=1

τ∆ (x · vj)uj, (1.5)

where τ∆(t) := t−Q∆(t) =
({

t
∆ + 1

2

}
− 1

2

)
∆, with {·} denoting the fractional part. While

the a priori error bound is relatively straightforward to obtain, the mean square error

MSE := E
(
‖x − x̂‖2

)
, assuming certain probability distribution for x, is much harder. To

simplify the problem, the so-called White Noise Hypothesis (WNH), originally introduced

in [4], is employed by engineers and mathematicians in this area. The WNH asserts the

following:

• Each τ∆ (x · vj) is uniformly distributed in [−∆/2,∆/2); hence it has mean 0 and

variance ∆2/12.

• {τ∆ (x · vj)}
N
j=1 are independent random variables.

With the WNH the MSE is easily shown to be

E
(
‖x − x̂‖2

)
=

∆2

12

d∑

j=1

λ−1
j =

∆2

12

N∑

j=1

‖uj‖
2. (1.6)

where {λj} are the eigenvalues of FF T .

But surprisingly there has not been any study on the legitimacy of the WNH, especially

considering the fact that it is made under very general settings, where both the frame

{vj}
N
j=1 and the probability distribution of x ∈ Rd can take on numerous possibilities.

Thus, the WNH deserves a closer scrutiny, which is what this paper intends to do.

We prove in this paper that under the assumption that the distribution of x has a den-

sity (absolutely continuous), the components of the quantization errors {τ∆ (x · vj)}
N
j=1 can

never be independent if N > d, and thus the WNH can never hold. However, our main

result is that of a vindication of the WNH. We show that as ∆ → 0+, {τ∆ (x · vj)}
N
j=1

becomes asymptotically pairwise independent and thus pairwise uncorrelated, as long as vi

is not parrallel to vj for any i 6= j. Additionally each τ∆ (x · vj) indeed becomes asymptot-

ically uniformly distributed on [−∆/2,∆/2]. These slightly weaker properties are sufficient

to lead to the MSE given by (1.6) asymptotically. We also characterize the asymptotic

behavior of the MSE if some vectors are parallel. These and other results are stated and

proved in subsequent sections.
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2. A Priori Error Bound and MSE under the WNH

In this section we derive a priori error bounds and the formula for the MSE under

the WNH. These results are not new. We include them for self-containment. We use the

following settings throughout this section: Let {vj}
N
j=1 be a frame in Rd with corresponding

frame matrix F = [v1,v2, . . . ,vN ]. The eigenvalues of FF T are λmax = λ1 ≥ λ2 ≥ · · · ≥

λd = λmin > 0. Let {uj}
N
j=1 be the canonical dual frame with corresponding matrix

G = (FF T )−1F . For any x =
∑N

j=1 (x · vj)uj, using the quantization alphabet A = ∆Z

we have the PCM quantized reconstruction

x̂ =

N∑

j=1

Q∆ (x · vj)uj.

Proposition 2.1. For any x ∈ Rd we have

‖x − x̂‖ ≤
1

2

√
N

λmin
∆. (2.1)

If in addition {vj}
N
j=1 is a tight frame with frame bound λ, then

‖x − x̂‖ ≤
1

2

√
N

λ
∆. (2.2)

Proof. We have x−x̂ =
∑N

j=1 τ∆ (x · vj)uj = Gy, where y = [τ∆ (x · v1) , . . . , τ∆ (x · vN )]T .

Thus ‖x − x̂‖2 = yTGTGy ≤ ρ
(
GTG

)
‖y‖2 where ρ(·) denotes the spectral radius. Now

ρ(GTG) = ρ(GGT ) = ρ((FF T )−1) = λ−1
min. Observe that |τ∆ (x · vj)| ≤ ∆/2. Thus

‖y‖2 ≤ N(∆/2)2. This yields the a priori error bound (2.1). The bound (2.2) is an

immediate corollary. �

Proposition 2.2. Under the WNH, the MSE is

E
(
‖x − x̂‖2

)
=

∆2

12

d∑

j=1

λ−1
j =

∆2

12

N∑

j=1

‖uj‖
2. (2.3)

In particular, if {vj}
N
j=1 is a tight frame with frame bound λ, then

E
(
‖x − x̂‖2

)
=

d

12λ
∆2. (2.4)

Proof. Denote GTG = [bij ]
N
i,j=1 and again let y = [τ∆ (x · v1) , . . . , τ∆ (x · vN )]T . Note

that with the WNH, E(yiyj) = E(τ∆(x ·vi)τ∆(x · vj)) = (∆2/12)δij . Now x− x̂ = Gy and
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hence

E
(
‖x − x̂‖2

)
= E

(
yTGTGy

)
=

N∑

i,j=1

bijE (yiyj) =

N∑

i=1

bii
∆2

12
=

∆2

12
tr(GTG).

Finally, tr(GTG) =
∑N

j=1 ‖uj‖
2, and tr(GTG) = tr(GGT ) = tr((FF T )−1) =

∑d
j=1 λ

−1
j . �

Remark: The MSE formulae (2.2-2.4) still hold if the independence of {τ∆ (x · vj)}
N
j=1 in

the WNH is replaced with the weaker condition that {τ∆ (x · vj)}
N
j=1 are uncorrelated.

3. A Closer Look at the WNH

The WNH asserts that the error components {τ∆ (x · vj)}
N
j=1 are independent and iden-

tically distributed random variables. We show that in general this is not true.

Theorem 3.1. Let X ∈ Rd be an absolutely continuous random vector. Let {vj}
N
j=1 be a

frame in Rd with N > d and vj 6= 0. Then the random variables {τ∆ (X · vj)}
N
j=1 are not

independent.

Proof. Let F be the frame matrix for the frame {vj}. Then dim(range(F T )) = d,

and therefore L(range(F T )) = 0 where L is the Lebesgue measure on RN . Let Y =

[Y1, . . . , YN ]T := F TX, and let Ŷ = [Q∆(Y1), . . . , Q∆(YN )]T be the quantized Y. Denote

Z = Y − Ŷ = [Z1, . . . , ZN ]T . Note that Yj = vj · X, so each Yj is absolutely continuous,

and therefore so is each Zj . Assume Zj has density ψj(·). If {Zj} are independent, then Z

has density

ψ(z1, . . . , zN ) =
N∏

j=1

ψj(zj).

Now, for y ∈ RN denote ŷ = [Q∆(y1), . . . , Q∆(yN )]T . Set Ω := {y − ŷ : y ∈ Img(F T )},

Kw := {y − w : y ∈ Img(F T ), ŷ = w} and Lw := {y : y ∈ Img(F T ), ŷ = w}. Note that

Kw and Lw are just translations of one another. Therefore L(Kw) = L(Lw). If Λ = {ŷ : y ∈

Img(F )}, then, Λ is countable, and therefore Ω =
⋃

w∈Λ
Kw, while Img(F ) =

⋃
w∈Λ

Lw.

Therefore L(Kw) ≤ L(Img(F )) = 0, and hence L(Ω) = 0. Nevertheless, note that ψ(x) = 0

for x ∈ Ωc. It follows,

P (Z ∈ Rn) =

∫

Ω
ψ(x) dx = 1,

which is a contradition. �



6 DAVID JIMENEZ, LONG WANG, AND YANG WANG

Theorem 3.2. Let X = [X1, . . . , Xm]T be a random vector in Rm whose distribution has

density function g(x1, . . . , xm).

(1) The error components {τ∆ (Xj)}
m
j=1 are independent if and only if there exist com-

plex numbers {βj(n) : 1 ≤ j ≤ m,n ∈ Z} such that

ĝ
(a1

∆
, . . . ,

am

∆

)
= β1(a1) · · · βm(am) (3.1)

for all [a1, . . . , am]T ∈ Zm.

(2) Let hj(t) be the marginal density of Xj. Then {τ∆ (Xj)}
m
j=1 are identically dis-

tributed if and only if

∑

n∈Z

hj(t− n∆) = H(t) a.e.

for some H(t) independent of j. They are uniformly distributed on [−∆/2,∆/2] if

and only if H(t) = 1/∆ a.e..

Proof. To prove (1) we first prove that Y = [τ∆ (X1) , . . . , τ∆ (Xm)]T has a density function.

Let I∆ = [−∆/2,∆/2]. Set

h(y) :=
∑

a∈Zm

g(y − ∆a) (3.2)

for y ∈ Im
∆ . For any Ω ⊆ Im

∆ we have

∫

Ω
h(y) = P (Y ∈ Ω) = P (X ∈ Ω + ∆Zm) =

∑

a∈Zm

∫

Ω
g(y − ∆a) =

∫

Ω

∑

a∈Zm

g(y − ∆a).
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Thus, the density of Y is given by (3.2) for y ∈ Im
∆ . Now, on I∆ the Fourier series of h(y)

is h(y) =
∑

a∈Zm cae
2iπ a

∆
·y, where

ca =
〈
g(y), e2iπ a

∆
·y

〉
L2(Im

∆ )

=

∫

Im
∆

∑

b∈Zm

g(y − ∆b)e−2iπ a

∆
·y dy

=
∑

b∈Zm

∫

Im
∆

g(y − ∆b)e−2iπ a

∆
·y dy

=
∑

b∈Zm

∫

Im
∆ +∆b

g(y)e−2iπ a

∆
·(y+∆b) dy

=
∑

b∈Zm

∫

Im
∆ +∆b

g(y)e−2iπ a

∆
·y dy

=

∫

Rm

g(y)e−2iπ a

∆
·y dy

= ĝ
( a

∆

)
.

But {Yj}
m
j=1 are independent if and only if on Im

∆ we have g(y1, . . . , ym) = g1(y1) · · · gm(ym).

It is easily checked that this happens if and only if

ĝ
(a1

∆
,
a2

∆
, . . . ,

am

∆

)
= h1

(a1

∆

)
h2

(a2

∆

)
· · · hm

(am

∆

)

for all a = [a1, . . . , am]T ∈ Zm, with hj(ξ) = ĝi(ξ). This part of the theorem is proved by

setting βj(n) = hj(n).

To prove (2), we only have to observe that the density of τ∆(Xj) is precisely
∑

n∈Z
hj(t−

∆n) for t ∈ I∆. This immediately yields
∑

n∈Z
hj(t − ∆n) = H(t) for some H(t) on I∆.

But each
∑

n∈Z
hj(t − ∆n) is ∆-periodic. Furthermore, if τ∆(Xj) is uniformly distributed

on I∆ then H(t) = 1/∆. This completes the proof of the theorem. �

Theorem 3.2 puts strong constraints on the distribution of x for the WNH to hold.

Let X ∈ Rd be a random vector with joint density f(x). Let {vj}
d
j=1 be linearly in-

dependent, and let Y = [X · v1,X · v2, . . . ,X · vd]
T . Then the joint density of Y is

g(y) = |det(F )|−1f
(
(F T )−1y

)
where F = [v1,v2, . . . ,vd]. Thus, both the independence

and the identical distribution assumptions in the WNH, even for N = d, will not be true

unless very exact conditions are met.
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Corollary 3.3. Let X ∈ Rd be a random vector with joint density f(x) and {vj}
d
j=1 be

linearly independent vectors in Rd. Let Y = F TX = [X · v1, . . . ,X · vN ]T and g(y) =

|det(F )|−1f
(
(F T )−1y

)
where F = [v1, . . . ,vd].

(1) {τ∆ (Yj)}
d
j=1 are independent random variables if and only if there exist complex

numbers {βj(n) : 1 ≤ j ≤ d, n ∈ Z} such that

ĝ
(a1

∆
, . . . ,

ad

∆

)
= β1(a1) · · · βd(ad) (3.3)

for all [a1, . . . , ad]
T ∈ Zd.

(2) Let hj(t) =
∫

Rd−1 g(x1, . . . , xj−1, t, xj+1, . . . , xd) dx1 · · · dxj−1 dxj+1 . . . dxd. Then

{τ∆ (Xj)}
d
j=1 are identically distributed if and only if

∑
n∈Z

hj(t− n∆) = H(t) a.e.

for some H(t) independent of j. They are uniformly distributed on [−∆
2 ,

∆
2 ] if and

only if H(t) = 1/∆ a.e..

Proof. We only have to observe that g(y) is the density of Y and that hj is the marginal

density of Yj. The corollary now follows directly from the theorem. �

4. Asymptotic Behavior of Errors: Linear Independence Case

In many practical applications such as music CD, fine quantizations with 16 bits or more

have been adopted. Although the WNH is not valid in general, with fine quantizations

we prove here that a weaker version of the WNH is close to being valid, which yields an

asymptotic formula for the PCM quantized MSE.

We again consider the same setup as before. Let {vj}
N
j=1 be a frame in Rd with corre-

sponding frame matrix F = [v1,v2, . . . ,vN ]. The eigenvalues of FF T are λmax = λ1 ≥ λ2 ≥

· · · ≥ λd = λmin > 0. Let {uj}
N
j=1 be the canonical dual frame with corresponding matrix

G = (FF T )−1F . For any x ∈ Rd we have x =
∑N

j=1 (x · vj)uj. Using the quantization

alphabet A = ∆Z we have the PCM reconstruction (1.4). Note that x̂ = x̂(∆) as it depends

on ∆. With the WNH we obtain the MSE

MSE = E
(
‖x − x̂‖2

)
=

∆2

12

N∑

j=1

λ−1
j .
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To study the asymptotic behavior of the error components, we study as ∆ → 0+ the

normalized quantization error

1

∆
(x − x̂) =

N∑

j=1

1

∆
τ∆ (x · vj)uj. (4.1)

Theorem 4.1. Let X ∈ Rd be an absolutely continuous random vector. Let w1, . . . ,wm be

linearly independent vectors in Rd. Then
[

1

∆
τ∆ (X ·w1) , . . . ,

1

∆
τ∆ (X ·wm)

]T

converges in distribution as ∆→0+ to a random vector unformly distributed in [−1/2, 1/2]m.

Proof. Denote Yj = X · wj. Since {wj} are linearly independent, Y = [Y1, . . . , Ym]T is

absolutely continuous with some joint density f(x), x ∈ Rm. As a consequence of (3.2) one

has that the distribution of Z = [Z1, . . . , Zm]T , where Zj = 1
∆τ∆(Yj) =

{
Yj

∆ + 1
2

}
− 1

2 , is

f∆(x) := ∆m
∑

a∈Zm

f(∆x− ∆a). (4.2)

for x ∈ [−1/2, 1/2]m . Again denote I1 := [−1/2, 1/2]. Observe that

‖f∆‖L1(Im
1 ) =

∫

Im
1

|f∆(x)| dx

=

∫

Im
1

∆m

∣∣∣∣∣
∑

a∈Zm

f(∆x− ∆a)

∣∣∣∣∣ dx

≤
∑

a∈Zm

∫

Im
1

∆m |f(∆x− ∆a)| dx

=
∑

a∈Zm

∫

Im
∆ +∆a

|f (y)| dy

=

∫
S

a∈Zm(Im
∆ +∆a)

|f (y)| dy

=

∫

Rm

|f (y)| dy

= ‖f‖L1(Rm).

Now, if Ω = [a1, b1] × · · · × [am, bm] and f(x) = 1Ω(x), then for x ∈ Im
1 observe that

f∆(x) = ∆mK∆ where K∆(x) = #{a ∈ Zm : ∆x + ∆a ∈ Ω}. Obviously, K∆(x) =

s/∆m + O(∆−m+1) where s = L(Ω) is the Lebesgue measure of Ω. Then f∆ → s1Im
1

in

L1(Im
1 ) as ∆ → 0+.
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Coming back to the case when f(x) is the density of Y. For any ε > 0 it is possible to

choose a g(x) ∈ L1(Rm) such that ‖f − g‖L1 < ε
3 , and furthermore, g(x) =

∑N
j=1 cj1Ej

(x)

is a simple function where cj ∈ R and each Ej is a product of finite intervals. Observe that
∫

Rm g =
∑N

j=1 cjL(Ej). Since (1Ej
)∆ → L(Ej)1Im

1
in L1 we have g∆ →

(∫
Rm g

)
1Im

1
as

∆ → 0. Hence there exists a δ > 0 such that
∥∥g∆ −

(∫
Rm g

)
1Im

1

∥∥
L1 < ε/3 whenever ∆ < δ.

Now, for ∆ < δ,

∥∥f∆ − 1Im
1

∥∥
L1(Im

1 )
= ‖f∆ − g∆‖L1(Im

1 ) +
∥∥g∆ −

(∫
Rm g

)
1Im

1

∥∥
L1(Im

1 )

+
∣∣1 −

(∫
Rm g

)∣∣ ‖1Im
1
‖L1(Im

1 )

<
ε

3
+
ε

3
+

∣∣1 −
(∫

Rm g
)∣∣

=
2ε

3
+

∣∣(∫
Rm g

)
−

(∫
Rm g

)∣∣

< ε.

�

Applying the above theorem to the MSE, if {vj}
N
j=1 are pairwise linearly independent

then the error components {τ∆ (X · vj)}
N
j=1 become asymptotically pairwise independent

and each uniformly distributed in [−∆
2 ,

∆
2 ]. Therefore we have the following:

Corollary 4.2. Let X ∈ Rd be an absolutely continuous random vector. If {vj}
N
j=1 are

pairwise linearly independent, then as ∆ → 0+ we have

E
(
‖X − X̂‖2

)
=

∆2

12

d∑

j=1

λ−1
j + o(∆2) =

∆2

12

N∑

j=1

‖uj‖
2 + o(∆2). (4.3)

Proof. Denote F the frame matrix associated to {vj}
N
j=1, H = (FF T )−1, Yj = X · vj ,

Zj =
{

Yj

∆ + 1
2

}
− 1

2 , and Z = [Z1, . . . , Zm]T . By Theorem 4.1, E (Zi) → 0 and E (ZiZj) →
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1
12δij as ∆ → 0+. It follows from the proof of Proposition 2.2 that

1

∆2
E(‖X − X̂‖2) = E(ZTHZ)

= E




N∑

i,j=1

ZiZjhij




=

N∑

i,j+1

hijE (ZiZj)

=
1

12

N∑

i=1

hii + o(1)

=
1

12

d∑

j=1

λ−1
j + o(1),

and hence

E
(
‖X − X̂‖2

)
=

∆2

12

N∑

j=1

λ−1
j + o(∆2) =

∆2

12

N∑

j=1

‖uj‖
2 + o(∆2).

�

5. Asymptotic Behavior of Errors: Linear Dependence Case

Mathematically it is very interesting to understand what happens if {vj}
N
j=1 are not

pairwise linearly independent, and how the MSE behaves as ∆ → 0+. We return to

previous calculations and note that

E(‖X − X̂‖2) =

N∑

i,j=1

hijE (τ∆(X · vi)τ∆(X · vj)) .

Our main result in this section is:

Theorem 5.1. Let X be an absolutely continuous real random variable. Let α ∈ R \ {0}.

Then

lim
∆→0+

1

∆2
E (τ∆(X)τ∆(αX)) =





0, α 6= Q,

1

12pq
, α =

p

q
and p+ q is even,

−
1

24pq
, α =

p

q
and p+ q is odd,

(5.1)

where p, q are coprime integers.
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Proof. Denote g(x) := {x + 1
2} − 1

2 , and let gn(x) be a small perturbation of g(x) such

that

(a) |gn(x)| ≤ 1/2;

(b) supp(g(x) − gn(x)) ⊆ [ 12 − 1
n
, 1

2 + 1
n
] + Z;

(c) gn(x) ∈ C∞, and is Z-periodic.

Now, set

E(∆) := E (τ∆(X)τ∆(αX))

= E

(
g

(
X

∆

)
g

(
αX

∆

))

=

∫

R

g
( x

∆

)
g

(αx
∆

)
f(x) dx,

and

En(∆) :=

∫

R

gn

( x
∆

)
gn

(αx
∆

)
f(x) dx.

Claim: En(∆) → E(∆) as n→ ∞ uniformly for all ∆ > 0.

Proof of the Claim. For any ε > 0,

|En(∆) −E(∆)| =

∣∣∣∣
∫

R

[
gn

( x
∆

)
gn

(αx
∆

)
− g

( x
∆

)
g

(αx
∆

)]
f(x) dx

∣∣∣∣

≤
1

2

∫

R

∣∣∣gn

( x
∆

)
− g

( x
∆

)∣∣∣f(x) dx+
1

2

∫

R

∣∣∣gn

(αx
∆

)
− g

(αx
∆

)∣∣∣f(x) dx.

Now there exists an M > 0 such that
∫
[−M,M ]c f(x) dx < ε

2 . So

∫

R

∣∣∣gn

( x
∆

)
− g

( x
∆

)∣∣∣ f(x) dx ≤

∫ M

−M

∣∣∣gn

( x
∆

)
− g

( x
∆

)∣∣∣ f(x) dx+
ε

2
.

Furthermore, let An(∆,M) := supp(gn(x/∆) − g(x/∆)) ∩ [−M,M ]. Then we have

An(∆,M) ⊆ ([
1

2
−

1

n
,
1

2
+

1

n
] + Z) ∩ [−M,M ].

Hence L(An(∆,M)) ≤ 2M
∆ · 2∆

n
= 4M

n
, and thus

∫ M

−M

∣∣∣gn

( x
∆

)
− g

( x
∆

)∣∣∣ f(x) dx ≤

∫

An(∆,M)

f(x) dx <
ε

2

by choosing n sufficiently large (independent of ∆), which yields
∫

R

∣∣∣gn

( x
∆

)
− g

( x
∆

)∣∣∣ f(x) dx < ε.
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Similarly we have ∫

R

∣∣∣gn

(αx
∆

)
− g

(αx
∆

)∣∣∣ f(x) dx < ε

for sufficiently large n, proving the Claim. 2

Now consider the Fourier Series of gn(t),

gn(t) =
∑

k∈Z

c
(n)
k e2πikt.

It is well known that the Fourier series converges to gn(t) uniformly for all t, see e.g. [18].

Furthermore, since gn(t) is C∞ we have |c
(n)
k | = o

(
(|k| + 1)−L

)
for all L > 0, giving absolute

convergence of the Fourier series. Thus

En(∆) = lim
K→∞

∫

R

( ∑

|k|≤K

c
(n)
k e2πikt∆−1

)( ∑

|k|≤K

c
(n)
k e2πikαt∆−1

)
f(t) dt

= lim
K→∞

∑

|k|,|`|≤K

c
(n)
k c

(n)
` f̂

(
−
k + α`

∆

)
.

Observe that |f̂(ξ)| ≤ ‖f‖L1 = 1, and |c
(n)
k | = o

(
(|k| + 1)−L

)
for any L > 0. So the series

converges absolutely and uniformly in ∆. Thus

En(∆) =
∑

k,`∈Z

c
(n)
k c

(n)
` f̂

(
−
k + α`

∆

)
. (5.2)

For any n > 0 we have

lim
∆→0+

En(∆) =
∑

k,`∈Z

c
(n)
k c

(n)
` lim

∆→0+
f̂
(
−
k + α`

∆

)

because the series converges absolutely and uniformly. Suppose α /∈ Q. Then k + α` 6= 0 if

either k 6= 0 or ` 6= 0. Thus
∣∣−k+α`

∆

∣∣ → ∞, and hence lim∆→0+ f̂
(
−k+α`

∆

)
= 0 as f ∈ L1(R).

It follows that

lim
∆→0+

En(∆) = 0.

But En(∆) → E(∆) as n→ ∞ uniformly in ∆, which yields E(∆) → 0 as ∆ → 0+.

Next, suppose α = p
q

where p, q ∈ Z, (p, q) = 1. We observe that k + α` = 0 if and only

if k = qm and ` = −pm for some m ∈ Z. In such a case

f̂
(
−
k + α`

∆

)
= f̂(0) =

∫

R

f = 1.

It follows that

lim
∆→0+

En(∆) =
∑

m∈Z

c(n)
qmc

(n)
−pmf̂(0) =

∑

m∈Z

c(n)
qmc

(n)
−pm =

∑

m∈Z

c(n)
qmc

(n)
pm.
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For r ∈ Z, r 6= 0 set

G(n)
r (x) :=

∑

m∈Z

c(n)
rme

2πimx

and

Gr(x) :=
∑

m∈Z

crme
2πimx.

By Parseval we have

En(∆) =
〈
G(n)

q , G(n)
p

〉
L2([0,1])

.

It is easy to check that

G(n)
r =

1

|r|

|r|−1∑

j=0

gn

(x+ j

r

)
.

Hence G
(n)
r converges in L2([0, 1]) to Gr(x) = 1

|r|

∑|r|−1
j=0 g

(
x+j

r

)
, which has Fourier series

Gr(x) =
∑

m∈Z
crme

2πimx with c0 = 0 and ck = (−1)k−1(2πik) for k 6= 0. This yields

lim
n→∞

lim
∆→0+

En(∆) = lim
n→∞

〈
G(n)

q , G(n)
p

〉
= 〈Gq, Gp〉 =

∑

m∈Z

cqmcpm.

Finally

∑

m∈Z

cqmcpm =
∑

m∈Z\{0}

((−1)qm−1

2πimq

)((−1)pm−1

2πimp

)

=
1

2pqπ2

∞∑

m=1

(−1)(p+q)m

m2
.

Note that if p + q is even then
∑∞

m=1
(−1)(p+q)m

m2 =
∑∞

m=1
1

m2 = π2

6 . On the other hand, if

p+ q is odd then
∑∞

m=1
(−1)(p+q)m

m2 =
∑∞

m=1
(−1)m

m2 = −π2

12 . The theorem follows. �

Corollary 5.2. Let X be an absolutely continuous random vector in Rd, w 6= 0, w ∈ Rd

and α ∈ R \ {0}. Then

lim
∆→0+

1

∆2
E (τ∆(w ·X)τ∆(αw · X)) =





0, α 6= Q,

1

12pq
, α =

p

q
and p+ q is even,

−
1

24pq
, α =

p

q
and p+ q is odd,

(5.3)

where p, q are coprime integers.

Proof. We only need to note that w ·X is an absolutely continuous random variable. The

corollary follows immediately from Theorem 4.1. �
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We can now characterize completely the asymptotic bahavior of the MSE in all cases.

For any two vectors w1,w2 ∈ Rd define r(w1,w2) by

r(w1,w2) =





1

pq
w1 ·w2, w1 =

p

q
w2, and p+ q is even,

−
1

2pq
w1 ·w2, w1 =

p

q
w2, and p+ q is odd,

0, otherwise,

where p, q are coprime integers.

Corollary 5.3. Let X ∈ Rd be an absolutely continuous random vector. Then as ∆ −→ 0+

the MSE satisfies

E
(
‖x − x̂‖2

)
=

∆2

12

d∑

j=1

λ−1
j +

∆2

6

∑

1≤i<j≤N

r(ui,uj) + o(∆2), (5.4)

Proof. In the proof of (4.2) we showed that

lim
∆→0+

1

∆2
E

(
‖x − x̂‖2

)
= ∆2

∑

i,j

hijE (ZiZj)

with the notations there. The result is immediate from Theorem 5.2. �

For fixed quantization step ∆ > 0 we shall denote

MSEideal =
∆2

12

d∑

j=1

λ−1
j +

∆2

6

∑

1≤i<j≤N

r(ui,uj), (5.5)

and call it the ideal MSE. If {vj}
N
j=1 are pairwise linearly independent, then the MSEideal

is simply ∆2

12

∑d
j=1 λ

−1
j , the MSE under the WNH.

In the next section we shall show some numerical data, comparing the actual MSE with

the ideal MSE.

Appendix. Numerical Results

Here we present data from our computer experiments comparing the ideal MSE to the

actual MSE. We have performed simulations for several different sets of frames. We also

experimented with various distributions for x ∈ Rd. As it turns out, we get very similar

results for the distributions we used for most of the frames we tried. In the examples shown,

the random vectors X are all chosen to be uniformly distributed in [−5, 5]d.
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Example 5.1. Let {vj}
N
j=1 be the harmonic frame in R2, with vj =

[
cos

2πj

N
, sin

2πj

N

]T

.

This is a tight frame with frame bound λ =
N

2
. The ideal MSE is

∆2

3N
for N odd. Taking

∆ =
1

2
, Table 1 displays the actual MSE, the ideal MSE and the ratio between them. It

shows that as N gets larger than 129, the actual MSE does not improve, which shows that

the WNH is invalid for large ∆.

N Actual MSE Ideal MSE Ratio
9 0.00934342 0.00925926 1.009090
17 0.00479521 0.00252525 0.976808
33 0.00246669 0.00490196 0.978223
65 0.00122499 0.00128205 0.955496

129 0.00065858 0.00645995 1.019480
257 0.00057971 0.00032425 1.787810
513 0.00056039 0.00016244 3.449740
1025 0.00052914 0.00008130 6.508450
2049 0.00053895 0.00004067 13.25180
4097 0.00058846 0.00002034 28.93090

Table 1. The Harmonic frame in R2

Example 5.2. Let {vj}
N
j=1 be N independently and randomly generated vectors uniformly

distributed on the unit sphere in R4. Table 2 shows the ratio between the actual MSE and

the ideal MSE, where MSEideal = ∆2

12 (
∑d

j=1 λ
−1
j ), with ∆ = 2−k.

Example 5.3. Let {vj}
N−1
j=0 be the harmonic frame in R4, with

vj =

√
1

2

[
cos

2πj

N
, sin

2πj

N
, cos

4πj

N
, sin

4πj

N

]T

.

This is a tight frame with frame bound λ =
N

4
, and the ideal MSE is

4∆2

3N
. Table 3 shows

the ratio between the actual MSE and the ideal MSE where ∆ = 2−k.

Example 5.4. Let {vj}
5
j=0 be a frame in R3, with the corresponding matrix

F =




1 1 1 2 −3
1 −1 −1 2 −3
1 0 −1 2 −3



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k/N N = 64 N = 128 N = 256 N = 512 N = 1024
k= 0 1.581960 2.232260 3.697160 6.497800 12.20670
k= 1 1.076590 1.130510 1.397840 1.649530 2.480920
k= 2 1.003680 0.995214 1.008370 1.033280 1.196680
k= 3 0.967138 0.990876 0.999648 0.981633 1.010090
k= 4 0.989295 1.009840 1.032110 1.002630 1.002260
k= 5 1.011720 1.035590 1.020870 1.002350 1.022250
k= 6 0.978712 1.006760 0.992207 1.001490 0.979342
k= 7 0.997524 1.017840 0.995852 0.972120 0.976273
k= 8 0.998725 1.011380 1.040270 0.978204 0.973284
k= 9 0.982450 1.038580 0.994463 1.021580 1.037800
k=10 0.993099 1.002340 1.009930 1.009870 0.974017
k=11 0.981428 0.998280 0.975881 1.049010 1.009570

Table 2. The randomly generated frame in R4

k/N N = 64 N = 128 N = 256 N = 512 N = 1024
k= 0 0.997218 0.928318 1.287990 2.312710 4.497050
k= 1 1.005460 1.004720 0.950783 1.339810 2.395180
k= 2 0.990253 1.001070 0.977474 0.960994 1.354320
k= 3 0.995848 0.993963 0.981683 0.992655 0.955345
k= 4 0.987371 1.007310 1.028120 1.016760 1.002570
k= 5 0.993840 1.015230 1.026680 1.003770 1.023820
k= 6 1.012230 1.012280 0.996363 0.999742 1.004120
k= 7 1.020450 1.025820 1.031120 1.003770 1.004770
k= 8 1.004710 1.010820 0.999289 0.973596 0.970415
k= 9 0.993542 1.003380 0.981550 0.984594 0.981001
k=10 1.015610 1.008740 0.997469 0.986705 1.004360
k=11 1.010690 1.009080 0.994975 1.010510 0.998485

Table 3. The Harmonic frame in R4

Note that the set contains many parallel vectors. The MSE under the WNH is 0.2946∆2

and our result, the ideal MSE is 0.2959∆2, due to the fact that {vj}
5
j=0 contains parallel

vectors. Table 4 shows the actual MSE, the ideal MSE, and the ratio between the actual

MSE and the ideal MSE, where ∆ = 2−k.
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