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ABSTRACT. The White Noise Hypothesis (WNH), introduced by Bennett half century
ago, assumes that in the pulse code modulation (PCM) quantization scheme the errors
in individual channels behave like white noise, i.e. they are independent and identically
distributed random variables. The WNH is key to estimating the means square quanti-
zation error (MSE). But is the WNH valid? In this paper we take a close look at the
WNH. We show that in a redundant system the errors from individual channels can never
be independent. Thus to an extend the WNH is invalid. Our numerical experients also
indicate that with coarse quantization the WNH is far from being valid. However, as the
main result of this paper we show that with fine quantizations the WNH is essentially
valid, in which the errors from individual channels become asymptotically pairwise inde-
pendent, each uniformly distributed in [-A/2, A/2), where A denotes the stepsize of the
quantization.

1. INTRODUCTION

In processing, analysing and storaging of analog signals it is often necessary to make
atomic decompositions of the signal using a given set of atoms, or basis {v;}. With the

basis, a signal x is represented as a linear combination of {v},
X = E CjVij.
J

In practice {v;} is a finite set. Furthermore, for the purpose of error correction, recovery
from data erasures or robustness, redundancy is built into {v;}, i.e. more elements than
needed are in {v;}. Instead of a true basis, {v;} is chosen to be a frame. Since {v;} is a

finite set, we may without loss of generality assume {v; };VZI are vectors in R? with N > d.

Let F = [vq,va,...,vy]| be the d X N matrix whose columns are vy,...,vy. We say

{Vj}N:1 is a frame if F' has rank d. Let Apax > Amin > 0 be the maximal and minimal
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eigenvalues of F'FT | respectively. It is easily checked that

N

>‘minHX||2 < Z x - Vj|2 < )‘maXHXH2- (1.1)
j=1

Amax and Apin are called the upper and lower frame bounds for the frame, respectively. If
Amax = Amin = A, in which case FFT = \I;, we call {v; }] 1 a tight frame with frame bound
A. Note that any signal x € R? can be easily reconstructed using the data {x - v W =1 Set

y=[x-vi,x-Vvo, -+ ,x-vy|l. Theny = FTx and
(FFT)y"'Fy = (FFT)"1FFTx = x.

Let G = (FFT)™'F = [uj,uy,...,uy]. The set of columns {uj}é-v:l of G is called the

canonical dual frame of the frame {v; };VZI We have the reconstruction

Z X-Vj)u (1.2)
7j=1

If {vj}é-vzl is a tight frame with frame bound ), then G = A\~'F, and we have the recon-

struction

N
Z X-Vj)V (1.3)

y|)—~

In digital applications, quantizations will have to be performed. The simplest scheme is
the Pulse Code Modulation (PCM) quantization scheme, in which the coefficients {x-v ; }jvzl
are quantized. In this paper we consider exclusively linear quantizations. Let A = AZ where
A > 0 is the quantization step. With linear quantization a real value t is replaced with the

value in A that is the closest to t. So, in our setting, ¢ is replaced with Qa(t) given by

t 1
t)y=|—+=-|A
Thus, given a frame {v, }¥ j=1 and its canonical dual frame {u; W j=1, instead of using the data
{x- vj}j:1 and (1.2) to obtain a perfect reconstruction, we use the data {Qa(x - Vj)}é-vz1

and obtain an imperfect reconstruction

N
Z (x-vj)uy. (1.4)

This raises the following question: How good is the reconstruction? This question has been

studied in terms of both the worst case error and the mean square error (MSE), see e.g. [12].
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Note that the error from the reconstruction is
N
X—X= ) 7a(x-Vj)uy, (1.5)
1

Ll NS
Il

where 7a(t) :=t—Qa(t) = ({£ + 3} — 3) A, with {-} denoting the fractional part. While
the a priori error bound is relatively straightforward to obtain, the mean square error
MSE := £ (||x — X||?), assuming certain probability distribution for x, is much harder. To
simplify the problem, the so-called White Noise Hypothesis (WNH), originally introduced
in [4], is employed by engineers and mathematicians in this area. The WINH asserts the

following:

e Each 7a (x - v;) is uniformly distributed in [-A/2,A/2); hence it has mean 0 and
variance A%/12.

o {7a (x- vj)};.\f:1 are independent random variables.

With the WINH the MSE is easily shown to be

512 A2 -1 A% & 2
€l =%IP) = 75 20" =15 > Iwll” (1.6)
j=1

7=1
where {);} are the eigenvalues of FFT.

But surprisingly there has not been any study on the legitimacy of the WINH, especially
considering the fact that it is made under very general settings, where both the frame
{Vj}é—vzl and the probability distribution of x € R? can take on numerous possibilities.

Thus, the WINH deserves a closer scrutiny, which is what this paper intends to do.

We prove in this paper that under the assumption that the distribution of x has a den-
sity (absolutely continuous), the components of the quantization errors {7 (x - vj)};.\f: | can
never be independent if N > d, and thus the WNH can never hold. However, our main
result is that of a vindication of the WINH. We show that as A — 01, {7a (x- Vj)}j-vzl
becomes asymptotically pairwise independent and thus pairwise uncorrelated, as long as v;
is not parrallel to v; for any i # j. Additionally each 7a (x - v;) indeed becomes asymptot-
ically uniformly distributed on [-A/2, A/2]. These slightly weaker properties are sufficient
to lead to the MSE given by (1.6) asymptotically. We also characterize the asymptotic

behavior of the MSE if some vectors are parallel. These and other results are stated and

proved in subsequent sections.
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2. A Priort ERROR BOUND AND MSE UNDER THE WNH

In this section we derive a priori error bounds and the formula for the MSE under
the WINH. These results are not new. We include them for self-containment. We use the
following settings throughout this section: Let {v; }évzl be a frame in R¢ with corresponding
frame matrix F' = [v1,Va,...,vy]. The eigenvalues of FFT are Apax = A1 > Ag > -+ >
Ad = Amin > 0. Let {uj}év:l be the canonical dual frame with corresponding matrix
G = (FFT)"'F. For any x = Zjvzl (x-v;)uy, using the quantization alphabet A = AZ

we have the PCM quantized reconstruction

||M2

(x-vj)u
Proposition 2.1. For any x € R? we have
~ 1 / N
Ix — x| < = A. (2.1)
2 )\min

If in addition {vj} ", 15 a tight frame with frame bound X, then

1 /N
—X|| < =4/ =A. 2.2
x %)< 0y (2
Proof. We have x—X = Z;VZI A (X - vj)u; = Gy, wherey = [ta (x-Vv1),...,7a (x - vn)]T.

Thus [|x — X||? = y'GTGy < p (GTG) |ly||* where p(-) denotes the spectral radius. Now
p(GTG) = p(GGT) = p((FFT)~') = Al . Observe that |ra (x-v;)| < A/2. Thus
lyl?> < N(A/2)2. This yields the a priori error bound (2.1). The bound (2.2) is an

immediate corollary. |

Proposition 2.2. Under the WNH, the MSE is

Az )
£ (Ix— =) 122 S (23)
=1

In particular, if {V]} _, 5 a tight frame with frame bound X, then

d
_02) — 2
E(IIlx —x[%) —12)\A . (2.4)
Proof. Denote GTG = [bij]%’ﬂ and again let y = [ta (x-Vv1),...,7a (x - vy)]T. Note

that with the WNH, E(y;y;) = E(Ta(x - vi)Ta(x - v;)) = (A%?/12)5;;. Now x — X = Gy and
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hence
N

A% A2
S112) T AT _ T
E(lx—x|7) =€ (y'G'Gy) = ]E 1b2]5 Yiyj) E b i79 = 13 tr(G* G).

Finally, tr(GTG) = ZJ L2, and tr(GTG) = tr(GGT) = tr((FFT) b= ZJ 1 )\j_ . i

Remark: The MSE formulae (2.2-2.4) still hold if the independence of {7a (x - vj)}é-vzl in

the WINH is replaced with the weaker condition that {7 (x - vj)}é-vzl are uncorrelated.

3. A CLOSER LooK AT THE WNH

The WNH asserts that the error components {7 (x - vj)}j»vzl are independent and iden-

tically distributed random variables. We show that in general this is not true.

Theorem 3.1. Let X € R? be an absolutely continuous random vector. Let {vj}é-vzl be a
frame in R with N > d and v; # 0. Then the random variables {ra (X - vj)}é-vzl are not

independent.

Proof. Let F be the frame matrix for the frame {v;}. Then dim(range(FT)) = d,
and therefore £(range(F7)) = 0 where £ is the Lebesgue measure on RY. Let Y =
V1,...,Yn]T = FTX, and let Y = [Qa(Y1),...,Qa(Yn)]T be the quantized Y. Denote
Z=Y-Y = [Z1,...,Zn]T. Note that Y; = v; - X, so each Yj is absolutely continuous,
and therefore so is each Z;. Assume Z; has density ¢;(-). If {Z;} are independent, then Z
has density

N
Y(z1,...,2N) = ij(zj).

Now, for y € RY denote § = [Qa(11),...,Qa(yn)]T. Set Q := {y — y € Img(FT)},
Ky :={y—w:ycImg(FT), y =w}and Ly, := {y : y € Img(F7T), w}. Note that
Ky and Ly, are just translations of one another. Therefore £L(Kyw) = L(Lw). f A={y:y €

Img(F)}, then, A is countable, and therefore 2 = |J Ky, while Img(F) = |J Lw.
weA weEA
Therefore L(Ky, ) < L(Img(F')) = 0, and hence £(2) = 0. Nevertheless, note that ¢(z) =

for x € Q°. It follows,
P(Z € R") = / () de —
Q

which is a contradition. [ |

y:
y =



6 DAVID JIMENEZ, LONG WANG, AND YANG WANG

Theorem 3.2. Let X = [X1,...,X|T be a random vector in R™ whose distribution has

density function g(x1,...,Tm).

(1) The error components {Ta (X;)}L, are independent if and only if there exist com-

plex numbers {3;(n) : 1 < j <m,n € Z} such that

3 (Fo ) = Brl@) - Bulan) (3.1)

for all [a, ... ,a,)" € Z™.
(2) Let hj(t) be the marginal density of X;. Then {Ta (X;)}]L; are identically dis-
tributed if and only if

D hi(t—nA)=H(t) a.e.

neL

for some H(t) independent of j. They are uniformly distributed on [—A/2,A/2] if
and only if H(t) = 1/A a.e..

Proof. To prove (1) we first prove that Y = [7a (X1),...,7a (X;)]” has a density function.
Let Za = [-A/2,A/2]. Set

for y € ZX'. For any Q2 C I}' we have

/Qh(y):P(YGQ):P(XEQjLAZm): > /Qg(y—Aa):/Q > gly — Aa).

aczm aczm
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Thus, the density of Y is given by (3.2) for y € ZX'. Now, on Za the Fourier series of h(y)

is h(y) = Y aczm Ca® ™2 Y, where

— 2i7r%-y>
Ca <g(y), e -

= [ 3 gty abjenEY ay
IX bezm

= Z/ g(y — Ab)e *"3Y gy
bezm Y IX

= > / gly)e 2™ BFAR) gy
bezm IKL-i-Ab

= > / g(y)e > maY dy
bezm IX+Ab

B / gly)e A dy
- 3(3).

But {Y;}7, are independent if and only if on Z{' we have g(y1,...,ym) = g1(y1) - - G (ym)-
It is easily checked that this happens if and only if

S(T G2 Gm) a1y, cGay L (am
Q(Z’Z""’K) =M (A)h2 (A) hm(A)
for all a = [ay,...,a,]T € Z™, with h;(€) = §i(€). This part of the theorem is proved by
setting Bj(n) = hj(n).

To prove (2), we only have to observe that the density of 7o (X}) is precisely D, o, h;(t—
An) for t € Za. This immediately yields ), ., h;(t — An) = H(t) for some H(t) on Za.
But each ), ., h;(t — An) is A-periodic. Furthermore, if 74(X}) is uniformly distributed
on Za then H(t) =1/A. This completes the proof of the theorem. [

Theorem 3.2 puts strong constraints on the distribution of x for the WINH to hold.
Let X € R? be a random vector with joint density f(x). Let {vj}?zl be linearly in-
dependent, and let Y = [X - v{,X - vo,...,X - vg]T. Then the joint density of Y is
g(y) = |det(F)|~1f (FT)~'y) where F = [vi,vs,...,vg]. Thus, both the independence
and the identical distribution assumptions in the WINH, even for N = d, will not be true

unless very exact conditions are met.
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Corollary 3.3. Let X € R? be a random vector with joint density f(x) and {vj}?zl be
linearly independent vectors in R%. Let Y = FTX = [X -vy,...,X - vy|T and g(y) =
|det(F)|7*f (FT)"'y) where F = [v1,...,vq].

(1) {ma (Yj)}?zl are independent random variables if and only if there exist complex

numbers {Bj(n) : 1 < j <d,n € Z} such that

(R x) = Aila) falaa) (33)

for all [ay,. .. aq)" € Z2.

(2) Let hj(t) = [ga-r9(@1,...,2j_1,t,Tjq1,...,2q) dry--- drj_y drjyy... drg. Then
{Ta (Xj)};l:1 are identically distributed if and only if Y, ., hj(t —nA) = H(t) a.e.
for some H(t) independent of j. They are uniformly distributed on [—%, %] if and

only if H(t) =1/A a.e..

Proof. We only have to observe that g(y) is the density of Y and that h; is the marginal

density of Y. The corollary now follows directly from the theorem. |

4. AsYMPTOTIC BEHAVIOR OF ERRORS: LINEAR INDEPENDENCE CASE

In many practical applications such as music CD, fine quantizations with 16 bits or more
have been adopted. Although the WNH is not valid in general, with fine quantizations
we prove here that a weaker version of the WINH is close to being valid, which yields an

asymptotic formula for the PCM quantized MSE.

We again consider the same setup as before. Let {v; }évzl be a frame in R? with corre-
sponding frame matrix F' = [vq,va,...,vy]. The eigenvalues of FFT are Apax = M1 > Ao >
<+ > Ag = Amin > 0. Let {u; };VZI be the canonical dual frame with corresponding matrix
G = (FFT)7'F. For any x € R? we have x = Zjvzl (x-vj)u;. Using the quantization
alphabet A = AZ we have the PCM reconstruction (1.4). Note that X = X(A) as it depends
on A. With the WINH we obtain the MSE

A2 &
MSE = € (|lx - %|%) = = > A"

12 <4 J
7j=1
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To study the asymptotic behavior of the error components, we study as A — 0% the

normalized quantization error
N
Z (x-vj)u,. (4.1)

Theorem 4.1. Let X € R? be an absolutely continuous random vector. Let w1, ..., Wy, be

linearly independent vectors in R%. Then

[%TA(X-WI),...,%M (X.wm)r

converges in distribution as A— 07 to a random vector unformly distributed in [—1/2,1/2]™

Proof. Denote Y; = X - w;. Since {w,} are linearly independent, Y = [V7,...,Y;,]T is

absolutely continuous with some joint density f(x), x € R™. As a consequence of (3.2) one

has that the distribution of Z = [Z1,..., Zm]?, where Zj = %TA(Y}) = {% + %} — %, is
fa(x) =A™ 3" f(Ax— Aa). (4.2)
aczm
for x € [-1/2,1/2]™. Again denote Z; := [—-1/2,1/2]. Observe that

ol = [ 1260l dx
Z f(Ax — Aa)| dx

- [
i aczm

> / A™|f(Ax — Aa)| dx

aczZm

:Z/I y)l dy

aczm +Aa

IN

/ £l dy
Uaezm (ZX+4a)

- / F )] dy
Rm

= |[fllzr @m)-

Now, if Q = [a1,b1] X -+ X [am, by] and f(x) = 1o(x), then for x € Z]" observe that
fa(x) = A™KA where Ka(x) = #{a € Z™ : Ax + Aa € Q}. Obviously, Ka(x) =
s/A™ + O(A™™1) where s = L(€) is the Lebesgue measure of Q. Then fa — slzm in
LY(Z7) as A — 0.
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Coming back to the case when f(x) is the density of Y. For any ¢ > 0 it is possible to
choose a g(x) € L'(R™) such that || f — g||;1 < 5, and furthermore, g(x) = Z;V 161k, (%)
is a simple function where c¢; € R and each E; is a product of finite intervals. Observe that
meg = Zjvzl c;L(Ej;). Since (1g;)a — L(E )lzm in L' we have ga — (me )121” as
A — 0. Hence there exists a 6 > 0 such that HgA — (me 1II"HL1 < £/3 whenever A < 4.
Now, for A < 6,

| fa — 1II”HL1(I;71) = fa—gallpi@m + lloa = (Jam 9) ]'I{nHLl(I{”)
1= (Jam 9) | 11z L1 2y
e €
< g+3+ 1= (fen9)l

_ 2—§+|(me9)—(me9)\

Applying the above theorem to the MSE, if {v]} —, are pairwise linearly independent

then the error components {7a (X - vj)} ; become asymptotically pairwise independent

A

ok 2] Therefore we have the following:

and each uniformly distributed in [—

Corollary 4.2. Let X € R? be an absolutely continuous random vector. If {vj}é-vzl are

pairwise linearly independent, then as A — 07 we have
e (Ix %) = 2 ZA +o(A%) = = Z lusl? + o(A2). (4.3)

Proof. Denote F' the frame matrix associated to {v; }] L H=(FFI)71 Y; = X - vy,

Zi={%+1} -4 and Z=[Z,...,2,]". By Theorem 4.1, £(Z;) — 0 and £ (2:7;) —
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%5@' as A — 0. It follows from the proof of Proposition 2.2 that

1 ~
SEIX-XIP) = £(2ZTHZ)

N
= £\ ZiZihy

1,j=1

N
= Y hiE(ZiZ)
i,j+1

and hence

& (Ix-X|?) = 122A +o(A?) = 12Z|ru]u2+o<a2>

5. ASYMPTOTIC BEHAVIOR OF ERRORS: LINEAR DEPENDENCE CASE

Mathematically it is very interesting to understand what happens if {vj}j-vzl are not
pairwise linearly independent, and how the MSE behaves as A — 07. We return to

previous calculations and note that

N
E(IX = X|*) = > hii€ (ra(X - vi)7a(X - V).
ij=1

Our main result in this section is:

Theorem 5.1. Let X be an absolutely continuous real random variable. Let o € R\ {0}.
Then

0, a#Q,
1 1 _ P nd .
Jim 5 (ra(X)ma(aX) = Topg O T g Mmepgis even (5.1)
1
- a:E and p + q s odd,
24pq q

where p,q are coprime integers.
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Proof. Denote g(z) := {x + £} — 3, and let g,(z) be a small perturbation of g(z) such
that

(@) |gn(z)] <1/2;
(b) supp(g(z) = gn(2)) €[5 — 5,5 + 5] + Z;
(¢) gn(x) € C*°, and is Z-periodic.

Now, set
E(A) = &(ra(X)malaX))
= e(0(5)4(%))
= RQ(%)Q(% f(x) d,
and

En(A) = /R g (%) on () (@) do

Claim: FE,(A)— E(A) as n — oo uniformly for all A > 0.

Proof of the Claim. For any € > 0,
Ll ()oe(5) -0 (2o (D) s

5 o (£) -0 (R o5 [ fon () -9 (F) 160

Now there exists an M > 0 such that f[_M Mie f(z)dx < 5. So
M €

[lon(3) s (&) rrde< [ |on (%) -0 ()] st do+ 5

Furthermore, let A, (A, M) := supp(gn(z/A) — g(x/A)) N [—M, M]. Then we have
1 11 1

C(l=— = -4 =

An(A,M)_([2 n,2+n

Hence L£(A, (A, M)) < 2L % = 4M " and thus

[En(A) — E(A)| =

IN

|+2Z)N[-M,M].

n ?

/_A; w(5)-s(z)| @ [ fed<]

An(A,M)

by choosing n sufficiently large (independent of A), which yields

[l (2) -2 (3)] oo <=
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Ll (52) - (D)oo <

for sufficiently large n, proving the Claim. a

Similarly we have

Now consider the Fourier Series of g, (t),

Z ¢ 27rzkt

keZ

It is well known that the Fourier series converges to gn(t) uniformly for all ¢, see e.g. [18].
Furthermore, since g, (t) is C* we have |c \ = o ((|k| +1)7F) for all L > 0, giving absolute

convergence of the Fourier series. Thus

E,(A) = lim (Z R [ D S VION

K—oo
|kI<K |kI<K
= 3 aH(E)
|k, 6| <K

Observe that [f(€)] < |[flz =1, and ]c,(gn)\ = o ((|k| + 1)) for any L > 0. So the series

converges absolutely and uniformly in A. Thus

n) ()~ k+ofl
Ba(8) = Y e F(-=5)- (5.2)
=
For any n > 0 we have
. m 7 k+aft
Ah_)lr%+E Z Ck CZ 1In f<— A >
k,leZ

because the series converges absolutely and uniformly. Suppose o ¢ Q. Then k + af # 0 if
either k£ £ 0 or £ # 0. Thus ‘ k+o‘z‘ — 00, and hence lima_, o+ f( k+o‘z) =0as f € L'(R).
It follows that

lim E,(A)=0.
A—0t

But E,(A) — E(A) as n — oo uniformly in A, which yields F(A) — 0 as A — 07.

Next, suppose o = % where p,q € Z, (p,q) = 1. We observe that k + af = 0 if and only

if kK =gm and £ = —pm for some m € Z. In such a case
~ k+a£ A
F(-=5)=To=[r=1

It follows that

All_)IIS+E E cqm _pm E cqm _pm E cqmcpm.

meZ meZ meZ
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For r € Z,r # 0 set
G&n) (l‘) — Z C&%e%rimx

meZ

.CC) — § :crme2mmx.

mEZ

and

By Parseval we have

_ [ o) A
En(A) <G G >LWWJD'

i,
“m X a(5):
j=
Hence G\ converges in L%([0,1]) to G,(r) = %‘ Z‘] ‘01 g(mﬂ ), which has Fourier series
Gr(2) =3, ez crm€*™™® with ¢o = 0 and ¢, = (—1)*~!(2mik) for k # 0. This yields

It is easy to check that

lim Tim B, (A) = lim (GI),GEV) = (Gy, Gy) = > compm:

n—oo A—0+ n—oo
meZ

Finally

—_1)am—1y ", (—1)pmn—1y
Zcqm%—m = Z <(271r)zmq ><(2717)zmp )

meZ meZ\{0}
1 i (—1)ta)m

- 2 2

2pgm — m
. . o (=1)tam 2 .
Note that if p + ¢ is even then )Zm 1 7 = Zm 1 m2 = % . On the other hand, if

+q)m

P+ ¢ is odd then Eﬁ: Derom Zm 1 m2 = —ﬁ. The theorem follows. [ |

Corollary 5.2. Let X be an absolutely continuous random vector in R?, w # 0, w € R?
and o € R\ {0}. Then

0, a#Q,
1 1 P nd )
Almé Fé’ (ta(w - X)7A(aw - X)) = 12pq’ &= q and p+q s even, (5.3)
1

—_ a="> and p + q is odd,
24pq q

where p,q are coprime integers.

Proof. We only need to note that w-X is an absolutely continuous random variable. The

corollary follows immediately from Theorem 4.1. |
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We can now characterize completely the asymptotic bahavior of the MSE in all cases.

For any two vectors wy, wo € R? define r(w1, ws) by

1 P :
—W1-Wo, W;=—Wo, and p+ ¢ is even,
pq q
r(wi, wo) = 1 P .
’ ———Wj1 - W9, Wi = —-Wsy, and p + ¢ is odd,
2pq q

0, otherwise,

where p, g are coprime integers.

Corollary 5.3. Let X € R be an absolutely continuous random vector. Then as A — 07
the MSE satisfies

5(”X—XH ) = Ez)‘j_ +? Z T(uivuj)+0(A )7 (54)
j=1

1<i<j<N
Proof. In the proof of (4.2) we showed that

. 1 ~
i € (x = %[) = A2 ZZJ: hi;€ (ZiZ;)

with the notations there. The result is immediate from Theorem 5.2. ]

For fixed quantization step A > 0 we shall denote

A2 d 1 A2
MSEideal = E Z /\]_ + ? Z T(uiy uj)7 (55)
=1 1<i<j<N

and call it the ideal MSE. If {v; }évzl are pairwise linearly independent, then the MSE; ..
is simply % Z?Zl j_l, the MSE under the WNH.

In the next section we shall show some numerical data, comparing the actual MSE with
the ideal MSE.

APPENDIX. NUMERICAL RESULTS

Here we present data from our computer experiments comparing the ideal MSE to the
actual MSE. We have performed simulations for several different sets of frames. We also
experimented with various distributions for x € R?. As it turns out, we get very similar
results for the distributions we used for most of the frames we tried. In the examples shown,

the random vectors X are all chosen to be uniformly distributed in [-5, 5]%.
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. T
2 2
Example 5.1. Let {vj}é\f:l be the harmonic frame in R%, with v; = {cos %,sin %} :
2

N A
This is a tight frame with frame bound \ = 5 The ideal MSE is 3N for N odd. Taking

1
A= o Table 1 displays the actual MSE, the ideal MSE and the ratio between them. It
shows that as N gets larger than 129, the actual MSE does not improve, which shows that

the WNH is invalid for large A.

N | Actual MSE | Ideal MSE | Ratio
9 0.00934342 | 0.00925926 | 1.009090
17 0.00479521 | 0.00252525 | 0.976808
33 0.00246669 | 0.00490196 | 0.978223
65 0.00122499 | 0.00128205 | 0.955496
129 0.00065858 | 0.00645995 | 1.019480
257 0.00057971 | 0.00032425 | 1.787810
513 0.00056039 | 0.00016244 | 3.449740
1025 0.00052914 | 0.00008130 | 6.508450
2049 0.00053895 | 0.00004067 | 13.25180
4097 0.00058846 | 0.00002034 | 28.93090

TABLE 1. The Harmonic frame in R?2

Example 5.2. Let {vj}é\f:l be N independently and randomly generated vectors uniformly
distributed on the unit sphere in R*. Table 2 shows the ratio between the actual MSE and

the ideal MSE, where MSE;geq = 55 (Y0_ A7), with A = 27F.

Example 5.3. Let {vj}é-v:_ol be the harmonic frame in R*, with

. . . .qT
v, = 1 (3os2ﬂsim22 czosélﬂsim42
J 2 N’ N’ N’ N

2

, and the ideal MSF is g

SN Table 3 shows

N
This is a tight frame with frame bound \ = y
the ratio between the actual MSE and the ideal MSE where A = 27,

Example 5.4. Let {Vj}?zo be a frame in R3, with the corresponding matriz

1 1 1 2 -3
F=11 -1 -1 2 -3
1 0 -1 2 -3
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k/N | N=64 | N=128 | N =256 | N =512 | N =1024
k=0 | 1.581960 | 2.232260 | 3.697160 | 6.497800 | 12.20670
1.076590 | 1.130510 | 1.397840 | 1.649530 | 2.480920
1.003680 | 0.995214 | 1.008370 | 1.033280 | 1.196680
0.967138 | 0.990876 | 0.999648 | 0.981633 | 1.010090
0.989295 | 1.009840 | 1.032110 | 1.002630 | 1.002260
1.011720 | 1.035590 | 1.020870 | 1.002350 | 1.022250
0.978712 | 1.006760 | 0.992207 | 1.001490 | 0.979342
0.997524 | 1.017840 | 0.995852 | 0.972120 | 0.976273
0.998725 | 1.011380 | 1.040270 | 0.978204 | 0.973284
0.982450 | 1.038580 | 0.994463 | 1.021580 | 1.037800
0.993099 | 1.002340 | 1.009930 | 1.009870 | 0.974017
0.981428 | 0.998280 | 0.975881 | 1.049010 | 1.009570

/,‘_
|
—

W
I

W‘W‘W‘W‘W’W‘W‘
—| o | oo | o o x| | o

W‘W‘

—_

TABLE 2. The randomly generated frame in R*

N=64 | N=128 | N =256 | N =512 | N =1024
0.997218 | 0.928318 | 1.287990 | 2.312710 | 4.497050
1.005460 | 1.004720 | 0.950783 | 1.339810 | 2.395180
0.990253 | 1.001070 | 0.977474 | 0.960994 | 1.354320
0.995848 | 0.993963 | 0.981683 | 0.992655 | 0.955345
0.987371 | 1.007310 | 1.028120 | 1.016760 | 1.002570
0.993840 | 1.015230 | 1.026680 | 1.003770 | 1.023820
1.012230 | 1.012280 | 0.996363 | 0.999742 | 1.004120
1.020450 | 1.025820 | 1.031120 | 1.003770 | 1.004770
1.004710 | 1.010820 | 0.999289 | 0.973596 | 0.970415
0.993542 | 1.003380 | 0.981550 | 0.984594 | 0.981001
1.015610 | 1.008740 | 0.997469 | 0.986705 | 1.004360
1.010690 | 1.009080 | 0.994975 | 1.010510 | 0.998485

Z
=

W
I

1
—| ol oo~ oo x| w| v —|lo

W‘W"W‘W‘W‘W‘

W
I

~|

i
= =

TABLE 3. The Harmonic frame in R*

Note that the set contains many parallel vectors. The MSE under the WNH is 0.2946A2
and our result, the ideal MSE is 0.2959A?, due to the fact that {Vj}?:() contains parallel
vectors. Table 4 shows the actual MSE, the ideal MSE, and the ratio between the actual
MSE and the ideal MSE, where A = 27,
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