Boundary treatments of quantum transport in non-equilibrium Green's function and Wigner distribution methods for RTD

Wei Cai

Mathematics and Statistics University of North Carolina at Charlotte

CASCAMM, U. of Maryland, March 8-11, 2010

Joint work with Haiyan Jiang & Ray Tsu

Outline

1. Introduction

- Structure of the RTD (Resonant Tunneling Diode)
- NEGF & Wigner Models

2. Quantum Transport Models

- 1D Non-equilibrium Green Function (NEGF)
- 1D Wigner Equation
- Self-consistent model and algorithm
- **3.Numerical Results**
- 4.Conclusion
- 5.Further Work

Introduction

Basics on Quantum Transport in Nano-Devices

• Device length vis the mean free path

 $L << l_{mpf}$

Channel Length L = 20 nmMean free path $l_{mpf} = 100 nm$

• Electron maintains coherence

Quantum interference

Ballistic Transport

• Schrodinger wave description needed

<u>Transport beyond Boltzman Equations</u>

Mean Free Path Time

Collusion Duration Time

 t_{col}

 t_{mfp}

Fermi Golden Rule

 t_{col}

- ➤Incomplete Collusions nonlocality of scattering ≻Memory effects
- ≻multiple Scatterings

Transport beyond Boltzmann Equations --- Effects from Non-Markovian processes

An Hierarchy of Models for Micro-to-NanoDevices

> Micro-Devices: $L > 1 \mu m$

Drift-Diffusion models, $L < 0.1 \mu m$

- submicron devices: non equilibrium, semi-classical Boltzmann, hydrodynamics models
- > Nanodevices:

✓ quantum interference (time and spatial correlations)

- ✓ many body scattering effect
- ✓ time dependent external fields

Nonequilibrium Green's function (quantum interference, many body scattering)

Density matrix

$$\rho(r,r',t) = \overline{\psi^*(r',t)\psi(r,t)}$$

Wigner distributions (Spatial correlation) f(R,k,t)

Resonant Tunneling Diode (RTD) (Tsu & Esaki, 1970)

Superlattice and negative differential conductivity in semiconductors L Esaki, R Tsu - IBMJ RES DEVELOP, 1970

Tunneling in a finite superlattice R Tsu, L Esaki, Applied Physics Letters 22, 562 (1973)]

No External Bias

with External Bias

Quantum Transport Models

•Non-equilibrium Green's Functions

•Wigner Distributions

Nonequilibrium Green's function for Many Body System

$$h(x, \nabla_x) = -\frac{1}{2}\nabla_x^2 + V(x, t)$$

Quantum Boltzmann Equation (Kadanoff-Baym formulation)

$$\frac{\partial}{\partial t} - h(x, \nabla_x) [G^<(x, t, x', t') - [-i\frac{\partial}{\partial t'} - h(x', \nabla_{x'})]G^<(x, t, x', t') = Coll.$$

$$h(x, \nabla_x) = -\frac{1}{2}\nabla_x^2 + V(x, t)$$

$$Coll = \{G^> \Sigma^< - \Sigma^> G^<\} - G^R \Sigma^< + \cdots$$

$$[i\frac{\partial}{\partial t} - h(x,\nabla_x)]G^R(x,t,x',t') = \delta(1-1') + \int_C d\sigma \int d^3 y \Sigma^R(x,t,y,\sigma)G^R(y,\sigma,x',t')$$

Key Quantity: Self Energy

[i

 Σ = Effects of Scattering events and Geometry

 $G^{<}(x,t,x',t')$ Correlation function (fluctuations)

 $A = -i \operatorname{Im} \{G^R\}$ Spectral density (dissipations)

Wigner Equation

$$[i\frac{\partial}{\partial T} + i\frac{k}{m}\nabla_R + qV_W]F(R,T,k,\omega) = Coll$$

$$V_{W}(f) = \left[V(R+i\frac{1}{2}\nabla_{k}, T-i\frac{1}{2}\frac{\partial}{\partial\omega}) - V(R-i\frac{1}{2}\nabla_{k}, T+i\frac{1}{2}\frac{\partial}{\partial\omega})\right]f(R, T, k, \omega)$$

$$\tau \to 0$$
 $F(R,T,k,\omega) \to f_W(R,k,T)$ Wigner Distribution
Quantum tunneling

2.Quantum transport models

1D NEGF

3D Schrödinger equation

$$H\Psi = E\Psi, \quad H = -\frac{\hbar^2}{2m_x}\frac{\partial^2}{\partial x^2} - \frac{\hbar^2}{2m_y}\frac{\partial^2}{\partial y^2} - \frac{\hbar^2}{2m_z}\frac{\partial^2}{\partial z^2} + eV(x, y, z)$$

For RTD , it is reduced to an 1D Schrödinger equation

$$-\frac{\hbar^2}{2m_x}\frac{\partial^2\phi(x)}{\partial x^2} + v(x)\phi(x) = E\phi(x)$$

The potential of the form

$$v(x) = \begin{cases} v_1 & -\infty < x < X_1 \\ v(x) & X_1 < x < X_2 \\ v_2 & X_2 < x < +\infty \end{cases}$$

1D Green equation:

$$(E - v(x) - \frac{\hbar^2}{2m_x} \frac{\partial^2}{\partial x^2})G(x, x') = \delta(x - x')$$

left boundary condition :

$$G(x'_{e}, x') = e^{-ik_{1}(x'_{e}-X_{1})}G(X_{1}, x'), x'_{e} \in (-\infty, X_{1}), x' \in [X_{1}, X_{2}]$$

right boundary condition:

$$G(x'_e, x') = e^{ik_2(x'_e - X_2)}G(X_2, x'), x'_e \in (X_2, -\infty), x' \in [X_1, X_2]$$

$$k_1 = \sqrt{\frac{2m_x(E - v_1)}{\hbar^2}}, \qquad k_2 = \sqrt{\frac{2m_x(E - v_2)}{\hbar^2}}$$

Finite Difference Method for the NEGF,

where
$$t_x = \frac{\hbar^2}{2m_x a^2}$$
, and $\Delta_i = E - 2t_x - v(x_i)$
 $\Sigma_s(i, j) = -t_x e^{ik_1 a} \delta_{1,j} \delta_{1,i}$ $\Sigma_d(i, j) = -t_x e^{ik_2 a} \delta_{N,j} \delta_{N,i}$
 $\Gamma_s(i, j) = 2t_x \sin(k_1 a) \delta_{1,j} \delta_{1,i}$ $\Gamma_d(i, j) = 2t_x \sin(k_2 a) \delta_{N,j} \delta_{N,i}$
 $\begin{bmatrix} EI - H - \Sigma_s - \Sigma_d \end{bmatrix} G = I$

Green's function representation of electron density

Device Green function:

$$G = \left[EI - H - \Sigma_s - \Sigma_d \right]^{-1}$$

Spectral function:

$$A_s = G\Gamma_s G^+, \qquad A_d = G\Gamma_d G^+$$

Self energy for environment (contacts) dissipation:

$$\Gamma_{s,d} = i(\Sigma_{s,d} - \Sigma_{s,d}^+)$$

$$\rho(x) = \frac{m^* k_B T}{2\pi^2 \hbar^2} \int \log(1 + e^{(\frac{\mu_s - E}{k_B T})}) A_s + \log(1 + e^{(\frac{\mu_s - E}{k_B T})}) A_d dE$$

Transmission Coefficients T & G

$$\phi(x) = \begin{cases} e^{ik_{1}x} + re^{-ik_{1}x}, & x < X_{1} \\ te^{ik_{2}x}, & x > X_{2} \end{cases}$$

$$\phi(x) = \begin{cases} e^{ik_{1}x} + re^{-ik_{1}x}, & x < X_{1} \\ te^{ik_{2}x}, & x > X_{2} \end{cases}$$

$$(EI - H - \Sigma_{s} - \Sigma_{d}) \begin{pmatrix} \phi(x_{0}) \\ \phi(x_{1}) \\ \vdots \\ \phi(x_{N}) \end{pmatrix} = \begin{pmatrix} i2t_{s} \sin(k_{1}a) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\phi(x_0) = 2it_x \sin(k_1 a) G(1, 1) \equiv i G(1, 1) \Gamma_s(1, 1)$$

electron current

$$j = \frac{\hbar}{2im_x} \left(\phi^*(x) \frac{\partial \phi(x)}{\partial x} - \phi(x) \frac{\partial \phi^*(x)}{\partial x} \right)$$

$$T^{s-d} = \frac{\dot{j}_{transmitted}}{\dot{j}_{incident}} = 1 - |r|^2 = 1 - |\phi(x_0) - 1|^2$$
$$= |G(1,1)|^2 \Gamma_s(1,1)\Gamma_d(N,N)$$

In general

$$T^{s-d} = \operatorname{trace}(\Gamma_s G \Gamma_d G^+)$$

Green's function representation of current density

Inflow current formula (Landauer or Tsu-Esaki formula)

$$I^{(\text{in})} = \int I^{(\text{in})}(E) dE = \frac{em^* k_B T}{2\pi^2 \hbar^3} \int_0^{+\infty} \log(1 + e^{(\frac{\mu - E}{k_B T})}) \mathrm{T}^{\text{s-d}}(E) dE$$
$$I^{(\text{in})}(E) = e \sum_{k_y k_z} T^{\text{s-d}}(E) F_f(\frac{\hbar^2 k_y^2}{2m_y} + \frac{\hbar^2 k_z^2}{2m_z} + E(k_x) - \mu) v_x(E(k_x))$$

Total current:

$$I = I^{(in)} - I^{(out)} \qquad I = \int_0^{+\infty} I(E) dE$$

$$I(E) = \frac{em^*k_BT}{2\pi^2\hbar^3} [\log(1 + e^{(\frac{\mu_s - E}{k_BT})}) - \log(1 + e^{(\frac{\mu_d - E}{k_BT})})]T^{s-d}(E)$$

ID Wigner Equation

Density matrix:

$$\rho(x,x') = \frac{m^* k_B T}{\pi \hbar^2} \sum_{k_x} \log(1 + e^{(\frac{\mu - E(k_x)}{k_B T})}) \varphi(x, E(k_x)) \varphi^*(x', E(k_x))$$

Weyl transform:

$$R = \frac{x+x'}{2}, \quad r = x-x'$$

Wigner function is defined as

$$f(R,k) = \int_{-\infty}^{+\infty} \rho(R + \frac{r}{2}, R - \frac{r}{2})e^{-ikr}dr$$

For a plane wave :

$$f^{\alpha}(R,k) = \int_{-\infty}^{+\infty} \varphi(R + \frac{r}{2}, E_{\alpha}) \varphi^{*}(R + \frac{r}{2}, E_{\alpha}) e^{-ikr} dr$$

Wigner equation:

$$-\frac{q\hbar^2}{m_x}\frac{\partial}{\partial x}f(x,k) - \frac{1}{2\pi}\int_{-\infty}^{\infty} V_w(x,k-k')f(x,k')dk' = 0$$

Wigner potential:

$$V_{w}(x,k) = \int_{-\infty}^{+\infty} \left[v(x+\frac{r}{2}) - v(x-\frac{r}{2}) \right] e^{ikr} dr$$

Density function described by Wigner Function:

$$\rho(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f_w(x,k) dk$$

Current density :

$$I(x) = e \int_{-\infty}^{+\infty} \frac{\hbar k}{m_x} f_w(x,k) dk$$

Truncations in the definition of Wigner potential

The original form of the second term in Wigner equation

$$\int_{-\infty}^{+\infty} \left[v(x + \frac{r}{2}) - v(x - \frac{r}{2}) \right] \rho(x + \frac{r}{2}, x - \frac{r}{2}) e^{-ikr} dr$$

Assumming $\rho(x + \frac{r}{2}, x - \frac{r}{2}) \to 0$, as $r \to \infty$

Truncate in Coherence length L_{coh} $r \in (-\infty, +\infty) \rightarrow [-\frac{L_{coh}}{2}, \frac{L_{coh}}{2}]$

$$\int_{-\frac{L_{coh}}{2}}^{+\frac{L_{coh}}{2}} \left[v(x+\frac{r}{2}) - v(x-\frac{r}{2}) \right] \rho(x+\frac{r}{2}, x-\frac{r}{2}) e^{-ikr} dr$$

Effective Wigner potential

$$\tilde{V}_{w}(x,k) = \int_{-\frac{L_{coh}}{2}}^{\frac{L_{coh}}{2}} \left[v(x+\frac{r}{2}) - v(x-\frac{r}{2}) \right] e^{ikr} dr$$

Mass conservation with full momentum k-space

$$\frac{\partial}{\partial t}f(x,k,t) + \frac{\hbar k}{m}\frac{\partial}{\partial x}f(x,k,t) + \int_{-\infty}^{+\infty}\tilde{V}_{w}(x,k-k')f(x,k',t)dk' = 0$$

• Electron density

• Current density

$$\mathbf{n}(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x,k,t) \mathrm{d}k. \qquad \mathbf{j}(x,t) = \frac{\hbar}{2\pi m} \int_{-\infty}^{+\infty} k f(x,k,t) \mathrm{d}k.$$

• we define

$$p(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dk \int_{-\infty}^{+\infty} dk' \tilde{V}_{w}(x,k-k') f(x,k',t) = 0$$

• Noting $V_w(x,k)$ is odd in k, we have the continuity equation

$$\frac{\partial}{\partial t}n(x,t) + \frac{\partial}{\partial x}j(x,t) = -p(x,t) \equiv 0$$

Truncation in phase space (x, k)

• Computation domain in k-space:

$$\Omega_k = \left[-\frac{L_k}{2}, \frac{L_k}{2}\right]$$

$$n(x,t) = \frac{1}{2\pi} \int_{-\frac{L_k}{2}}^{\frac{L_k}{2}} f(x,k,t) dk \qquad j(x,t) = \frac{\hbar}{2\pi m} \int_{-\frac{L_k}{2}}^{\frac{L_k}{2}} kf(x,k,t) dk$$
$$p(x,t) = \frac{1}{2\pi} \int_{-\frac{L_k}{2}}^{\frac{L_k}{2}} dk \int_{-\frac{L_k}{2}}^{\frac{L_k}{2}} dk' \tilde{V}_w(x,k-k') f(x,k',t)$$

$$\frac{\partial}{\partial t}f(x,k,t) + \frac{\hbar k}{m}\frac{\partial}{\partial x}f(x,k,t) + \int_{-\frac{L_k}{2}}^{\frac{L_k}{2}}\tilde{V}_w(x,k-k')f(x,k',t)dk' = 0$$

$$\frac{\partial}{\partial t}n(x,t) + \frac{\partial}{\partial x}j(x,t) = -p(x,t) = 0$$

Selection of Mesh h_k in k-space $k_j = jh_k$ $\tilde{V}_w(x,k_j) = \int_{-\frac{L_{coh}}{2}}^{\frac{L_{coh}}{2}} [v(x+\frac{r}{2})-v(x-\frac{r}{2})]e^{ik_j r} dr$ $= 2\int_{0}^{\frac{L_{coh}}{2}} [v(x+\frac{r}{2})-v(x-\frac{r}{2})]\sin(rk_j)dr$ $\approx h_{coh}\sum_{r=1}^{\frac{N_{coh}}{2}} \sin(r_l k_j)[*] + \frac{h_{coh}}{2}\sin(\frac{L_{coh}}{2}k_j)[*]$

To use Fast Discrete Fourier Transform:

$$r_{l}k_{j} = lh_{coh}k_{j} = j\frac{lL_{coh}h_{k}}{N_{coh}}$$
$$h_{k}L_{coh} = 2\pi$$

Selection of Mesh *h*_{coh} in Wigner Potentials

Conservation condition:

$$p(x) = \frac{1}{2\pi} \int_{-\frac{L_{k}}{2}}^{\frac{L_{k}}{2}} dk \int_{-\frac{L_{k}}{2}}^{\frac{L_{k}}{2}} dk' \tilde{V}_{w}(x, k - k') f(x, k', t) = 0$$

$$\tilde{V}_{w}(x, k - k') = h_{coh} \sum_{l=1}^{\frac{N_{coh}}{2} - 1} \sin(r_{l}(k - k'))[*] + \frac{h_{coh}}{2} \sin(\frac{L_{coh}}{2}(k - k'))[*]$$

$$\Rightarrow \int_{-\frac{L_{k}}{2}}^{\frac{L_{k}}{2}} \sin((k - k')r_{l}) dk = 0$$

$$\cos\left((\frac{L_{k}}{2} - k')r_{l}\right) - \cos\left((\frac{L_{k}}{2} - k')r_{l} - L_{k}r_{l}\right) = 0 \Rightarrow L_{k}h_{coh} = 2\pi$$

 L_k Truncation in the k-space

 L_{coh} Truncation in the coherence length

Frensley inflow boundary condition (1987) – a heuristic view

According to free electron (plane wave) source injection, the Wigner function is:

$$\varphi_{m}(x) = \begin{cases} e^{ik_{1}x} + re^{-ik_{1}x}, x < 0\\ te^{ik_{2}x}, x > L_{x} \end{cases} \qquad f^{m}(x,q) = \int_{-\infty}^{+\infty} \varphi_{m}(x + \frac{r}{2})\varphi_{m}(x - \frac{r}{2})e^{-iqr}dr$$
$$= \delta(k_{1} - q) + |r|^{2} \delta(k_{1} + q) - i2r\sin(k_{1}x)\delta(q)$$
$$(x < 0, k_{1} > 0)$$

Boundary Condition:

$$f(X_{1},q) = \frac{m^{*}k_{B}T}{\pi\hbar^{2}}\log\left(1 + \exp(\frac{\mu_{s} - \frac{\hbar^{2}q^{2}}{2m} - v_{1}}{k_{B}T})\right), q > 0$$
$$f(X_{2},q) = \frac{m^{*}k_{B}T}{\pi\hbar^{2}}\log\left(1 + \exp(\frac{\mu_{s} - \frac{\hbar^{2}q^{2}}{2m} - v_{2}}{k_{B}T})\right), q < 0$$

The scheme of the Wigner equation

Upwind scheme:

$$\frac{\hbar q_{j}}{m_{x}} \frac{f_{w}(x_{i},q_{j}) - f_{w}(x_{i-1},q_{j})}{h_{x}} + \frac{1}{\pi \hbar} \sum_{j'=0}^{N_{q}-1} V_{w}(x_{i},q_{j}-q_{j'}) f_{w}(x,q_{j'}) = 0, \quad q_{j} > 0$$

$$\frac{\hbar q_{j}}{m_{x}} \frac{f_{w}(x_{i+1},q_{j}) - f_{w}(x_{i},q_{j})}{h_{x}} + \frac{1}{\pi \hbar} \sum_{j'=0}^{N_{q}-1} V_{w}(x_{i},q_{j}-q_{j'}) f_{w}(x,q_{j'}) = 0, \quad q_{j} < 0$$

By trapezoidal rule

$$V_{w}(x_{i}, q_{j} - q_{j'}) = h_{coh} \sum_{k=1}^{\frac{N_{coh}}{2} - 1} \sin(kh_{coh}(q_{j} - q_{j'}))[v(x_{i+k}) - v(x_{i-k})] + \frac{h_{coh}}{2} \sin(\frac{L_{coh}}{2}(q_{j} - q_{j'}))[v(x_{i+N_{r}/2}) - v(x_{i+N_{r}/2})]$$

Density formula:

$$\rho(x) = \frac{1}{2\pi} \sum_{j=0}^{N_q} f_w(x, q_j) h_q$$

Current formula:

$$j(x + \frac{h_x}{2}) = \frac{h_q}{2\pi} \left[\sum_{q_j < 0} \frac{\hbar q_j}{m_x} f_w(x + h_x, q_j) + \sum_{q_j > 0} \frac{\hbar q_j}{m_x} f_w(x, q_j) \right]$$

Self-consistent model and algorithm

Poisson equation

ion

$$-\frac{\partial}{\partial x} \left(\varepsilon(x) \frac{\partial}{\partial x} \right) v(x) = e(-\rho(x) + N_d(x))$$

$$v(0) = 0, v(L) = -v_b$$

Self-consistent model

3. Numerical result

Comparison of the boundary conditions: Analytic test case

Density comparison of the Wave function, Green function and Wigner function methods

Density comparison of Green function and Wigner function method

IV curves with prescribed linear potential profile

The convergence of the NEGF method – Mesh refinement

Size of coherence length truncation h_{coh}, L_{coh}

Mesh Convergence of Wigner Method

 $L_c = L_b = 8.7575nm$

The current value computed by the Wigner equation is higher than that by the NEGF method.

NEGF current and contact length *L_c*

Wigner current & contact length L_c (1)

Wigner current & contact length L_c (2)

Comparison between NEGF & Wigner Currents

Self-Consistent Potentials in NEGF

Effect of the buffer size - NEGF

Effect of Buffer Size - Wigner

4 Conclusion

 The accuracy of the Frensley inflow boundary condition depends on the size of the contact region included in the simulation and potential height in the RTD. 5. Further work & Acknowledgement

Transient effect

Scattering effect

Funding Provided by ARO

Thank You!