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Kohn-Sham Density Functional Theory
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Kohn-Sham DFT:

min E ;
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» Code implemented using Troullier-Martins nonlocal pseudopotentials
in Kleinman-Bylander form.

» LDA not a limitation. GGA could be used.



Kohn-Sham Density Functional Theory

The Euler-Lagrange equations for the Kohn-Sham energy functional are

1 .
<—2A + Veff[P]) i = A, i=1,...,N,

where N
p=23" vl /w,-w,- _ 5,
=1

and

Varlr10) = [ 220 dy V() <(000) + p06)= ().

Typical Kohn-Sham approach:

1. Given a potential Vg, diagonalize and orthogonalize to obtain the
wave functions.

2. Given the new wave functions, update the density, and compute new
Vefr.

3. Diagonalization is O(N3).



Non-Orthonormal Formulation of Kohn-Sham DFT!

Given N linearly independent wave functions, {1);}, define the overlap

matrix:
Sjk = /%ﬁjl/fk-
Then,
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1W. Yang '97



Advantages of the Non-Orthogonal formulation

v

{1;} not orthogonal.

» Invariant under nonsingular linear transformations: Let V= VR,
with R € RVXN “invertible. Then,

Exs[V] = Eks[V].

v

The emphasis is therefore on the subspace spanned by {v);}.

v

Nonorthogonal wave functions have better localization properties.



Linear scaling methods for Kohn-Sham DFT

A number of linear scaling methods have appeared in the literature
(Goedecker '99):

1. Orbital Minimization (Mauri, Galli, Car '93, W. Yang '97, C. Yang,
J.C. Meza and L.W. Wang '06, Burger and Yang '07, W. Gao and
W. E '08).

2. Density Matrix Minimization (Li, Nunes, Vanderbilt, '93).

3. Fermi Operator Expansion (Goedecker '94; Lin, Lu, Car, E '09).

4. Divide and Conquer (Yang '91, L.W. Wang, Z. Zhao, J. Meza '06,
Barrault, Cancés, Hager, Le Bris '07).
An interesting O(N3) algorithm:
» Subspace lteration (Zhou, Saad, Tiago, Chelikowsky '06).

» New algorithm: Similar to the subspace iteration method of Zhou,
Saad, Tiago, and Chelikowsky '06, but, we avoid diagonalization
and orthogonalization (which is O(N?3)) (CJGC, Lu, E, '07, CJGC,
Lu, Xuan, E '08).



Linear scaling methods for Kohn-Sham DFT

Guiding principles:
» In the non-orthogonal formulation, the emphasis is on the subspace
generated by the wave functions.

» We want to generate the optimal eigenspace of the self-consistent
Hamiltonian: Filtering out the high end of the spectrum.

» Localization is key for linear scaling: We choose a localized basis
for this subspace.

» We use finite differences, and real-space formulation.
We avoid:

» Diagonalization and orthogonalization.

» Using a basis set.
» Using plane waves.
| 4

Using a supercell for non-periodic problems.



Localization in Quantum-Mechanics

» Related to Nearsightedness: A small disturbance in a molecule only
has a local effect in the electron density (W. Kohn, '96).

» Consider a Hamiltonian with a periodic potential in a crystalline
solid:

1
H= _§A + V(x). (1)
Floquet-Bloch theorem: The eigenfunctions have the form

Unk(x) = X un(x), (2)

where u,, « has the periodicity of V, and k belongs to the reciprocal
lattice.

> 1« is the Bloch function associated to wave vector k and band
index n.



Wannier Functions

From the Bloch functions, we construct the Wannier function for the n-th

band as: v
_ —ikR
W,(x,R) = E /BZ e Yi,n(x) dk. (3)

» Wannier functions are not unique: The Bloch functions can be
multiplied by an arbitrary phase.

» Wannier functions are translation invariant: W, (x, R) = W,(x — R).

» With this definition, they form an orthonormal basis.



Wannier Functions (I1)

To illustrate the previous definitions, consider the following
one-dimensional model:

1 d?
H= 52 V(x), (4)
where
> 1 A8 e’
V(x) = —a e = /(20%), 5
(==22 = (%)

» The parameter a represents the strength of the potential.

» The parameter o represents the width of the potential.



Bloch waves and Wannier functions

Bloch Wave Wannier Function for the second band
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Wannier Functions and Localization

» Wannier functions have good localization properties (W. Kohn '59,
des Cloizeaux '63-'64, E. Prodan & W. Kohn '05, G. Panati '06-'07,
Jianfeng Lu '09).

» Wannier functions have been used for numerical computations, e.g.,
Maximally Localized Wannier Functions (Marzari and Vanderbilt,
'97).

> In general, localized wave functions have been used to design O(N)
methods, typically

> As basis sets,
» Via truncation,
» Or both.

» OM and DMM include some form of truncation.

» For the study of solids, the definition must be extended to
non-orthogonal wave functions, and non-periodic systems.

» Localized Wannier functions can be constructed for elastically
deformed solids (W. E, J. Lu '09).



Optimally localized wave functions!
Given {1;}, define
V = span{%;}.

The optimally localized wave function, or generalized non-orthogonal
Wannier function, ¢*, is the minimizer of

i / w(x)|6()[2 dx.

eV, |¢ll2=1

» Generalizes the Maximally Localized Wannier Functions of Marzari
and Vanderbilt (1997).

> An alternative procedure is the Frobenius Localization (Weiguo Gao
and Weinan E '08).

» One can show that the non-orthogonal wave functions have
exponential decay?.

» The best weight function: w(x) = |x — c|?P.

2 Jianfeng Lu '08
1Weinan E, Tiejun Li, and Jianfeng Lu, '07



Algorithm for Localization?

1. Given a set of wave functions, {¢j}jN:1: centered at the locations
{b;}N.,, respectively.

2. We obtain an optimally localized basis by minimizing

Jrs |x — bj[?Plo(x)[? dx
Jea 6P

Flo] =

among functions ¢ of the form
B(y) = > ki (x).
k=1

3. Minimization leads to
Wa = \Sa.

> Only a fixed number r of functions involved, so this is O(/N)

» The localized functions span the same space.

1Weinan E, Tiejun Li, Jianfeng Lu, '07; CJGC, Jianfeng Lu, Weinan E, '07; CJGC,
Jianfeng Lu, Yulin Xuan, Weinan E, '08



Filtering Step

Goal: To improve the subspace by removing components in the high end
of the spectrum of the Hamiltonian

1
H= —§A + Veff[p].



Power Method

The simplest filter is probably the Power Method (Parlett, '98):

1. Given an initial vector v°.

2. For k > 0, define

2.1 .
Hv
k41
— 6
THVAT] (©)

2% Mk+1 — (vk+1)T 3 H\/k+1.

k+1 _

3. Repeat until |u | < Tolerance.

Convergence: If Hy; = A\jb;, and |A1] < |[A2| < -+ < |An|, then

1 _ AN-1
T Y = vw+ 0 (’ " ’)' (7)

» Note that when applied to a subspace, the space collapses to a
one-dimensional space.



Subspace lteration

The Subspace Iteration generalizes the Power Method to a subspace
(Parlett, '98):
1. Given an initial space Vg of dimension M < N, for each k > 1:

1.1 Calculate W, = HV,.

1.2 Orthogonalize the basis (QR decomposition, for example):
Wi = Qi Rx.

1.3 Let Vi = Q.

2. Repeat until convergence.

» The orthogonalization step is necessary in order to ensure the linear
independence of the vectors in the new space.

> If HyY; = A\itb;, and [A\q] < |Az| < -+ < |Aw], then the subspace
iteration converges with rate of convergence

— AM
AM+1

T < 1. (8)



Polynomial Filtering

» Filtering improves the rate of convergence of the subspace iteration.

» If the polynomial P splits the spectrum of H, in the sense that

P(X\) < P(wm), i=1,...,M, (9)
’D(>‘J) Z P()‘M+1)a J:M+27>M7 (10)
the rate of convergence of the polynomial filtered subspace iteration
is
P
— ‘(AM ) | (11)
P(/\M+1)

» No diagonalization necessary.



Chebyshev Filter

» Optimal choice: Chebyshev polynomial. T,(H).
> Recursive: Tpi1(x) = 2xTp(x) — Th—1(x).

>
[ cos(ncos™! x) if|x] <1,
Talx) —{ (—1)" cosh(ncosh™ [x|) if|x| > 1,
| - : :
Amin Ay A M Er Amax
'_+ o.:




Chebyshev Filter

> In the context of electronic structure analysis, subspace iteration has
been used by Zhou, Saad, Tiago, and Chelikowsky, '06.

» The orthogonalization step leads to an O(N3) method.

» We replace the orthogonalization step with a localization step,
achieving O(N).

» The Fermi energy must be estimated (no diagonalization is used).



Estimation of the Fermi energy

» Given the wave functions W, we know that ® = WS—1/2 are
orthogonal (Léwdin transformation).

» The Ritz matrix is
R=¢"Ho =S 1/2yTHYS /2

» We estimate the Fermi energy by the maximum eigenvalue of the
Ritz matrix.

» The eigenvalues of R are the same as the eigenvalues of
S1/2RS1/2 = yTHWS 1.
» We can use the Power method.

» Note that we do not need S~1, only w = S~1v, which can be
obtained by solving
Sw = v.

> S is sparse and localized, and WTHV is sparse: The Fermi energy
can be estimated in O(N).



Computation of the Electronic Density

= 22% kak(X)

v

Computing S~ directly is O(N3).
Instead, we use the Newton-Schultz iteration to solve

v

DSD - D =0.

v

S and S~ are localized near the diagonal.
g

v

Exploiting sparsity, computation is O(N) (Jansik, Host, Jorgensen,
Olsen, and Helgaker '07, Rubensson and Salek '05).

Alternatively, a pseudoinverse can be used (W. Yang '97).

v



Linear Scaling Algorithm for Kohn-Sham?!

: Given (localized) wave functions V.
repeat {(Self-Consistency Loop (SCF))}
Compute electronic density: p
Compute effective potential: Veg[p].
repeat {(Localized Subspace lteration)}
Estimate Fermi energy.
Filtering Step: ® = T,(H)V.
Localization Step: Localize ¢, for r=1,--- k.
Truncation beyond cut-off radius.
until Convergence of LINEAR iteration
Update electronic density (mixing).
cuntil ||pgr1 — pillr < Tol.

R I O R

=
Y = &

» Similar to the subspace iteration method of Zhou, Saad, Tiago, and
Chelikowsky '06, but, we avoid diagonalization and
orthogonalization (which is O(N3)).

» In practice, only one filtering step is performed.

1CJGC, Jianfeng Lu, Weinan E '07; CJGC, Jianfeng Lu,-YulinXuan, Weinan E, '08



Numerical Examples

Busl{u}] =235 [ (—wk) dx + Excl]

/ / (p=m) ™) g dy + Eosl(vn)]. (12)
R3 JR3 |X—Y|

» Electron density:

= 22% k() (13)
» lonic function:
Na
x) =Y _m’(x—Ry)), (14)
j=1

» Exchange and Correlation: Ceperley and Alder '80, as parameterized
by Perdew and Zunger, '81.



Numerical Examples (II)

» Pseudopotential energy:
Ersl{vi}] =237 [ vi(0Vestnlx)dx.  (19)
Jok

» Norm conserving Troullier-Martins pseudopotential in the
Kleinman-Bylander form:

Vost(x i( e (x = R)U(x)

Jj=1

Imax

+ Z / By = R)¥(y) dy B, (x — R,-)), (16)

1=0 m=—1

» m? decays exponentially.

> Viocal, Bim, are compactly supported.



Details of the implementation

» Finite differences.
» Sparse representation for the wave functions and pseudopotential
components.

» Coulomb term is approximated as a discrete convolution, evaluated
using the Fast Fourier Transform (FFT).

> Self-consistent iteration: Linear Mixing (not a limitation).

» Pseudopotential:

» Hydrogen: local component for the 1s orbital and no nonlocal
components.

» Carbon: We choose the 2p pseudopotential to be the local
component. The nonlocal pseudopotential is therefore the 2s
component.

» Pseudopotentials generated using code by Paolo Gianozzi and his
collaborators.



Example: Alkane - CH3(CH,)10CHs (74 atoms)




Example: Alkane - CH3(CH,)10CHs - Density




Example: Alkane - Molecular chain (290 atoms)




LSI Timings

Localization Chebyshev Filter; n=10
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Figure: Timings obtained with the LSI code. Linear scaling is observed.



Convergence Properties: 1d model problem

| 2

Consider an infinite array of atoms on a line with unit spacing:
Xi=1i, forieZ.

» Each atom has one valence electron and we ignore spin degeneracy.

The electrons are non-interacting: the electronic structure of the
system is determined by solving linear eigenvalue problems

Hap; = € (17)
Hamiltonian given by
H= —%:722 + V(x). (18)
Effective potential V is a sum of Gaussian wells located at the atom
sites: 3 s
V(x) = — % Wexp(f(x - X)?/20?). (19)
Two parameters:

» a characterizes the depth of the wells.
> o characterizes its width.



1d model problem: Band structure
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1d model problem: Band gap
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(e) Band gap as function of a. (f) Band gap as function of o.

» The gap is proportional to /a/o.

» By changing parameters, we may change the model from a well
gapped insulator to a metal-like system.



The Issue of Convergence

(g) Error in energy.

l
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The Issue of Convergence (II)

» Each LSI iteration contains three steps:
1. Starting from a given subspace, the filtering step makes the subspace
closer to the occupied subspace by filtering out the higher spectrum.
2. The localization step finds a better representation while keeping the
subspace unchanged.
3. Truncation of the localized basis.

» Without truncation, the LSI iteration will converge.

» After truncation, the subspace deviates from the correct occupied
subspace. As a result, the iteration process might not converge.

» This is generic to linear scaling algorithms involving truncation,
including variational methods such as orbital minimization (Weiguo
Gao, CJGC, Jianfeng Lu, Weinan E, '08).

» For LSI, initially the error decays exponentially and then starts to
fluctuate around a value that is small but different from the
round-off error.

» We call these fluctuations remanent fluctuation, and the error
between the numerical solution and the true minimizer (without
truncation) remanent error.



Local Error Estimate

» Denote by Vj the true occupied subspace, and by V), the subspace
in the n-th step.

» The error is d(V,, Vo).

» We use F, L and T to represent the filtering, localization and
truncation steps.

> ¢ quantifies the error caused by truncating the localized
representation of the true occupied subspace:

§ = d(TL(Vo), Vo). (20)



Local Error Estimate (II)

» If V, is sufficiently close to Vg,
ent1 = d(TLF(V,), Vo) < d(TLF(V,), F(V,))
+ d(F(Vh), Vo) < Cd + Xe,. (21)

» Therefore,
€0 < CH/(1—=N). (22)

» This guarantees that V), stays close to V.



Performance of the LSI
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Figure: The effect of the cut-off radius on the accuracy for the insulator case.
(k) Logarithmic plot of the error in the energy for different cut-off radii; (I) The

resulting wave functions for cut-off radii 0.2, 0.6 and 1.0.



Performance of the LSI (I1)

1’

Cutoff radius

(a) Error in the energy as a function of  (b) Wave functions for three cut-off radii.
the cut-off radius.

Figure: The effect of the cut-off radius on the accuracy for the metallic case.
(a) Logarithmic plot of the error in the energy for different cut-off radii; (b)
The resulting wave functions for cut-off radii 3.0, 6.0 and 9.0.



Comments and conclusions

» We have presented an efficient linear scaling methodology for
Kohn-Sham DFT.

» We have introduced a 1d model as a benchmark for linear scaling
methods.

» Convergence of a numerical algorithm is typically understood in
terms of the discretization size, and the number of iterations. In
that sense, linear scaling methods with truncation (typically) do not
converge.

» The size of the remanent error decreases when either the cut-off
radius, the band gap, or the order of the Chebyshev filter is
increased.

» Localization must be done before truncation.



Thank you!
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