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Kohn-Sham Density Functional Theory

EKS [{ψj}] = 2
N∑
j=1

(−1
2

)

∫
ψj (∆ψj) dx

+
1
2

∫ ∫
ρ(x)ρ(y)

|x − y |
dx dy +

∫
Vext(x)ρ(x) dx +

∫
ρε(ρ),

where

ρ(x) = 2
N∑
j=1

|ψj(x)|2

Kohn-Sham DFT:
min

(ψi ,ψj )=δij
EKS [{ψj}]

I Code implemented using Troullier-Martins nonlocal pseudopotentials
in Kleinman-Bylander form.

I LDA not a limitation. GGA could be used.



Kohn-Sham Density Functional Theory
The Euler-Lagrange equations for the Kohn-Sham energy functional are(

−1
2

∆ + Veff [ρ]

)
ψi = λiψi , i = 1, . . . ,N,

where

ρ = 2
N∑
i=1

|ψi |2,
∫
ψiψj = δij ,

and

Veff [ρ](x) =

∫
ρ(y)

|x − y |
dy + Vext(x) + ε(ρ(x)) + ρ(x)ε′(ρ(x)).

Typical Kohn-Sham approach:
1. Given a potential Veff , diagonalize and orthogonalize to obtain the

wave functions.
2. Given the new wave functions, update the density, and compute new

Veff .
3. Diagonalization is O(N3).



Non-Orthonormal Formulation of Kohn-Sham DFT1

Given N linearly independent wave functions, {ψj}, define the overlap
matrix:

Sjk =

∫
ψjψk .

Then,

EKS [{ψj}] = 2
∑
j,k

(
−1
2

)
(S−1)jk

∫
ψj (∆ψk) dx

+
1
2

∫ ∫
ρ(x)ρ(y)

|x − y |
dx dy +

∫
Vext(x)ρ(x) dx +

∫
ρε(ρ),

where
ρ(x) = 2

∑
jk

ψj(x)(S−1)jkψk(x)

1W. Yang ’97



Advantages of the Non-Orthogonal formulation

I {ψj} not orthogonal.
I Invariant under nonsingular linear transformations: Let Ψ̃ = ΨR,

with R ∈ RN×N , invertible. Then,

EKS [Ψ̃] = EKS [Ψ].

I The emphasis is therefore on the subspace spanned by {ψj}.
I Nonorthogonal wave functions have better localization properties.



Linear scaling methods for Kohn-Sham DFT

A number of linear scaling methods have appeared in the literature
(Goedecker ’99):
1. Orbital Minimization (Mauri, Galli, Car ’93, W. Yang ’97, C. Yang,

J.C. Meza and L.W. Wang ’06, Burger and Yang ’07, W. Gao and
W. E ’08).

2. Density Matrix Minimization (Li, Nunes, Vanderbilt, ’93).
3. Fermi Operator Expansion (Goedecker ’94; Lin, Lu, Car, E ’09).
4. Divide and Conquer (Yang ’91, L.W. Wang, Z. Zhao, J. Meza ’06,

Barrault, Cancès, Hager, Le Bris ’07).
An interesting O(N3) algorithm:

I Subspace Iteration (Zhou, Saad, Tiago, Chelikowsky ’06).

I New algorithm: Similar to the subspace iteration method of Zhou,
Saad, Tiago, and Chelikowsky ’06, but, we avoid diagonalization
and orthogonalization (which is O(N3)) (CJGC, Lu, E, ’07, CJGC,
Lu, Xuan, E ’08).



Linear scaling methods for Kohn-Sham DFT

Guiding principles:
I In the non-orthogonal formulation, the emphasis is on the subspace

generated by the wave functions.
I We want to generate the optimal eigenspace of the self-consistent

Hamiltonian: Filtering out the high end of the spectrum.
I Localization is key for linear scaling: We choose a localized basis

for this subspace.
I We use finite differences, and real-space formulation.

We avoid:
I Diagonalization and orthogonalization.
I Using a basis set.
I Using plane waves.
I Using a supercell for non-periodic problems.



Localization in Quantum-Mechanics

I Related to Nearsightedness: A small disturbance in a molecule only
has a local effect in the electron density (W. Kohn, ’96).

I Consider a Hamiltonian with a periodic potential in a crystalline
solid:

H = −1
2

∆ + V (x). (1)

Floquet-Bloch theorem: The eigenfunctions have the form

ψn,k(x) = e ik·xun,k(x), (2)

where un,k has the periodicity of V , and k belongs to the reciprocal
lattice.

I ψn,k is the Bloch function associated to wave vector k and band
index n.



Wannier Functions

From the Bloch functions, we construct the Wannier function for the n-th
band as:

Wn(x ,R) =
V

(2π)3

∫
BZ

e−ikRψk,n(x) dk . (3)

I Wannier functions are not unique: The Bloch functions can be
multiplied by an arbitrary phase.

I Wannier functions are translation invariant: Wn(x ,R) = Wn(x − R).
I With this definition, they form an orthonormal basis.



Wannier Functions (II)

To illustrate the previous definitions, consider the following
one-dimensional model:

H = −1
2

d2

dx2 + V (x), (4)

where

V (x) = −a
∞∑

i=−∞

1√
2πσ2

e−(x−i)
2/(2σ2). (5)

I The parameter a represents the strength of the potential.
I The parameter σ represents the width of the potential.



Bloch waves and Wannier functions



Wannier Functions and Localization

I Wannier functions have good localization properties (W. Kohn ’59,
des Cloizeaux ’63-’64, E. Prodan & W. Kohn ’05, G. Panati ’06-’07,
Jianfeng Lu ’09).

I Wannier functions have been used for numerical computations, e.g.,
Maximally Localized Wannier Functions (Marzari and Vanderbilt,
’97).

I In general, localized wave functions have been used to design O(N)
methods, typically

I As basis sets,
I Via truncation,
I Or both.

I OM and DMM include some form of truncation.
I For the study of solids, the definition must be extended to

non-orthogonal wave functions, and non-periodic systems.
I Localized Wannier functions can be constructed for elastically

deformed solids (W. E, J. Lu ’09).



Optimally localized wave functions1

Given {ψj}, define
V = span{ψj}.

The optimally localized wave function, or generalized non-orthogonal
Wannier function, φ∗, is the minimizer of

inf
φ∈V ,‖φ‖2=1

∫
w(x)|φ(x)|2 dx .

I Generalizes the Maximally Localized Wannier Functions of Marzari
and Vanderbilt (1997).

I An alternative procedure is the Frobenius Localization (Weiguo Gao
and Weinan E ’08).

I One can show that the non-orthogonal wave functions have
exponential decay2.

I The best weight function: w(x) = |x − c |2p.

2Jianfeng Lu ’08
1Weinan E, Tiejun Li, and Jianfeng Lu, ’07



Algorithm for Localization1

1. Given a set of wave functions, {ψj}Nj=1, centered at the locations
{bj}Nj=1, respectively.

2. We obtain an optimally localized basis by minimizing

F [φ] =

∫
R3 |x − bj |2p|φ(x)|2 dx∫

R3 |φ(x)|2 dx
,

among functions φ of the form

φ(y) =
r∑

k=1

αkψk(x).

3. Minimization leads to
Wa = λSa.

I Only a fixed number r of functions involved, so this is O(N)

I The localized functions span the same space.

1Weinan E, Tiejun Li, Jianfeng Lu, ’07; CJGC, Jianfeng Lu, Weinan E, ’07; CJGC,
Jianfeng Lu, Yulin Xuan, Weinan E, ’08



Filtering Step

Goal: To improve the subspace by removing components in the high end
of the spectrum of the Hamiltonian

H = −1
2

∆ + Veff [ρ].



Power Method

The simplest filter is probably the Power Method (Parlett, ’98):
1. Given an initial vector v0.
2. For k ≥ 0, define

2.1

vk+1 =
Hvk

‖Hvk‖ , (6)

2.2 µk+1 = (vk+1)T ·Hvk+1.

3. Repeat until |µk+1 − µk | ≤ Tolerance.
Convergence: If Hψi = λiψi , and |λ1| ≤ |λ2| ≤ · · · ≤ |λN |, then

1
‖Hv‖

Hv = ψN + O
(∣∣λN−1

λN

∣∣) . (7)

I Note that when applied to a subspace, the space collapses to a
one-dimensional space.



Subspace Iteration

The Subspace Iteration generalizes the Power Method to a subspace
(Parlett, ’98):
1. Given an initial space V0 of dimension M < N, for each k ≥ 1:

1.1 Calculate Wk = HVk .
1.2 Orthogonalize the basis (QR decomposition, for example):

Wk = QkRk .
1.3 Let Vk = Qk .

2. Repeat until convergence.

I The orthogonalization step is necessary in order to ensure the linear
independence of the vectors in the new space.

I If Hψi = λiψi , and |λ1| ≤ |λ2| ≤ · · · ≤ |λN |, then the subspace
iteration converges with rate of convergence

τ =
λM
λM+1

< 1. (8)



Polynomial Filtering

I Filtering improves the rate of convergence of the subspace iteration.
I If the polynomial P splits the spectrum of H, in the sense that

P(λi ) ≤ P(λM), i = 1, . . . ,M, (9)
P(λj) ≥ P(λM+1), j = M + 2, . . . ,M, (10)

the rate of convergence of the polynomial filtered subspace iteration
is

κ =

∣∣∣∣ P(λM)

P(λM+1)

∣∣∣∣ . (11)

I No diagonalization necessary.



Chebyshev Filter

I Optimal choice: Chebyshev polynomial. Tn(H).
I Recursive: Tn+1(x) = 2xTn(x)− Tn−1(x).
I

Tn(x) =
{

cos(n cos−1 x) if |x | ≤ 1,
(−1)n cosh(n cosh−1 |x |) if |x | ≥ 1,



Chebyshev Filter

I In the context of electronic structure analysis, subspace iteration has
been used by Zhou, Saad, Tiago, and Chelikowsky, ’06.

I The orthogonalization step leads to an O(N3) method.
I We replace the orthogonalization step with a localization step,

achieving O(N).
I The Fermi energy must be estimated (no diagonalization is used).



Estimation of the Fermi energy

I Given the wave functions Ψ, we know that Φ = ΨS−1/2 are
orthogonal (Löwdin transformation).

I The Ritz matrix is

R = ΦTHΦ = S−1/2ΨTHΨS−1/2

I We estimate the Fermi energy by the maximum eigenvalue of the
Ritz matrix.

I The eigenvalues of R are the same as the eigenvalues of
S1/2RS−1/2 = ΨTHΨS−1.

I We can use the Power method.
I Note that we do not need S−1, only w = S−1v, which can be

obtained by solving
Sw = v.

I S is sparse and localized, and ΨTHΨ is sparse: The Fermi energy
can be estimated in O(N).



Computation of the Electronic Density

ρ(x) = 2
∑
jk

ψj(x)(S−1)jkψk(x)

I Computing S−1 directly is O(N3).
I Instead, we use the Newton-Schultz iteration to solve

DSD−D = 0.

I S and S−1 are localized near the diagonal.
I Exploiting sparsity, computation is O(N) (Jansik, Host, Jorgensen,

Olsen, and Helgaker ’07, Rubensson and Salek ’05).
I Alternatively, a pseudoinverse can be used (W. Yang ’97).



Linear Scaling Algorithm for Kohn-Sham1

1: Given (localized) wave functions Ψ0.
2: repeat {(Self-Consistency Loop (SCF))}
3: Compute electronic density: ρ
4: Compute effective potential: Veff [ρ].
5: repeat {(Localized Subspace Iteration)}
6: Estimate Fermi energy.
7: Filtering Step: Φ = Tn(H)Ψ.
8: Localization Step: Localize ψr for r = 1, · · · , k.
9: Truncation beyond cut-off radius.

10: until Convergence of LINEAR iteration
11: Update electronic density (mixing).
12: until ‖ρk+1 − ρk‖1 ≤ Tol .

I Similar to the subspace iteration method of Zhou, Saad, Tiago, and
Chelikowsky ’06, but, we avoid diagonalization and
orthogonalization (which is O(N3)).

I In practice, only one filtering step is performed.

1CJGC, Jianfeng Lu, Weinan E ’07; CJGC, Jianfeng Lu, Yulin Xuan, Weinan E, ’08



Numerical Examples

EKS[{ψj}] = 2
∑
j,k

(S−1)jk

∫
R3
ψj

(
−1
2

∆ψk

)
dx + EXC[ρ]

+
1
2

∫
R3

∫
R3

(ρ−m)(x)(ρ−m)(y)

|x − y |
dx dy + EPS[{ψi}], (12)

I Electron density:

ρ(x) = 2
∑
jk

ψj(x)(S−1)jkψk(x), (13)

I Ionic function:

m(x) =
Na∑
j=1

ma(x − R j), (14)

I Exchange and Correlation: Ceperley and Alder ’80, as parameterized
by Perdew and Zunger, ’81.



Numerical Examples (II)

I Pseudopotential energy:

EPS[{ψi}] = 2
∑
j,k

(S−1)jk

∫
R3
ψj(x)V̂PSψk(x) dx . (15)

I Norm conserving Troullier-Martins pseudopotential in the
Kleinman-Bylander form:

V̂PSψ(x) =

Na∑
j=1

(
V j
Local(x − R j)ψ(x)

+
lmax∑
l=0

l∑
m=−l

∫
R3
βjlm(y − R j)ψ(y) dy βjlm(x − R j)

)
, (16)

I ma decays exponentially.
I VLocal, βlm, are compactly supported.



Details of the implementation

I Finite differences.
I Sparse representation for the wave functions and pseudopotential

components.
I Coulomb term is approximated as a discrete convolution, evaluated

using the Fast Fourier Transform (FFT).
I Self-consistent iteration: Linear Mixing (not a limitation).
I Pseudopotential:

I Hydrogen: local component for the 1s orbital and no nonlocal
components.

I Carbon: We choose the 2p pseudopotential to be the local
component. The nonlocal pseudopotential is therefore the 2s
component.

I Pseudopotentials generated using code by Paolo Gianozzi and his
collaborators.



Example: Alkane - CH3(CH2)10CH3 (74 atoms)



Example: Alkane - CH3(CH2)10CH3 - Density



Example: Alkane - Molecular chain (290 atoms)



LSI Timings

Figure: Timings obtained with the LSI code. Linear scaling is observed.



Convergence Properties: 1d model problem
I Consider an infinite array of atoms on a line with unit spacing:

Xi = i , for i ∈ Z.
I Each atom has one valence electron and we ignore spin degeneracy.
I The electrons are non-interacting: the electronic structure of the

system is determined by solving linear eigenvalue problems

Hψi = εiψi (17)

I Hamiltonian given by

H = −1
2

d2

dx2 + V (x). (18)

I Effective potential V is a sum of Gaussian wells located at the atom
sites:

V (x) = −
∑
i∈Z

a√
2πσ2

exp(−(x − Xi )
2/2σ2). (19)

I Two parameters:
I a characterizes the depth of the wells.
I σ characterizes its width.



1d model problem: Band structure

(a) a = 1000; σ = 0.15. (b) a = 100; σ = 0.3.

(c) a = 10; σ = 0.3. (d) a = 10; σ = 0.45.



1d model problem: Band gap

(e) Band gap as function of a. (f) Band gap as function of σ.

I The gap is proportional to
√

a/σ.
I By changing parameters, we may change the model from a well

gapped insulator to a metal-like system.



The Issue of Convergence

(g) Error in energy. (h) Error in energy before
and after truncation.

(i) Remanent fluctuation
(semiconductor case).

(j) Remanent fluctuation
(metal-like case).



The Issue of Convergence (II)
I Each LSI iteration contains three steps:

1. Starting from a given subspace, the filtering step makes the subspace
closer to the occupied subspace by filtering out the higher spectrum.

2. The localization step finds a better representation while keeping the
subspace unchanged.

3. Truncation of the localized basis.
I Without truncation, the LSI iteration will converge.
I After truncation, the subspace deviates from the correct occupied

subspace. As a result, the iteration process might not converge.
I This is generic to linear scaling algorithms involving truncation,

including variational methods such as orbital minimization (Weiguo
Gao, CJGC, Jianfeng Lu, Weinan E, ’08).

I For LSI, initially the error decays exponentially and then starts to
fluctuate around a value that is small but different from the
round-off error.

I We call these fluctuations remanent fluctuation, and the error
between the numerical solution and the true minimizer (without
truncation) remanent error.



Local Error Estimate

I Denote by V0 the true occupied subspace, and by Vn the subspace
in the n-th step.

I The error is d(Vn,V0).
I We use F , L and T to represent the filtering, localization and

truncation steps.
I δ quantifies the error caused by truncating the localized

representation of the true occupied subspace:

δ = d(TL(V0),V0). (20)



Local Error Estimate (II)

I If Vn is sufficiently close to V0,

en+1 = d(TLF (Vn),V0) ≤ d(TLF (Vn),F (Vn))

+ d(F (Vn),V0) ≤ Cδ + λen. (21)

I Therefore,
e∞ ≤ Cδ/(1− λ). (22)

I This guarantees that Vn stays close to V0.



Performance of the LSI

(k) Error in the energy as a function of
the cut-off radius.

(l) Wave functions for three values of the
cut-off radius.

Figure: The effect of the cut-off radius on the accuracy for the insulator case.
(k) Logarithmic plot of the error in the energy for different cut-off radii; (l) The
resulting wave functions for cut-off radii 0.2, 0.6 and 1.0.



Performance of the LSI (II)

(a) Error in the energy as a function of
the cut-off radius.

(b) Wave functions for three cut-off radii.

Figure: The effect of the cut-off radius on the accuracy for the metallic case.
(a) Logarithmic plot of the error in the energy for different cut-off radii; (b)
The resulting wave functions for cut-off radii 3.0, 6.0 and 9.0.



Comments and conclusions

I We have presented an efficient linear scaling methodology for
Kohn-Sham DFT.

I We have introduced a 1d model as a benchmark for linear scaling
methods.

I Convergence of a numerical algorithm is typically understood in
terms of the discretization size, and the number of iterations. In
that sense, linear scaling methods with truncation (typically) do not
converge.

I The size of the remanent error decreases when either the cut-off
radius, the band gap, or the order of the Chebyshev filter is
increased.

I Localization must be done before truncation.



Thank you!


	Kohn-Sham Density Functional Theory
	Introduction


